annotate src/fftw-3.3.3/dft/generic.c @ 54:5f67a29f0fc7

Rebuild MAD with 64-bit FPM
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 30 Nov 2016 20:59:17 +0000
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 #include "dft.h"
Chris@10 22
Chris@10 23 typedef struct {
Chris@10 24 solver super;
Chris@10 25 } S;
Chris@10 26
Chris@10 27 typedef struct {
Chris@10 28 plan_dft super;
Chris@10 29 twid *td;
Chris@10 30 INT n, is, os;
Chris@10 31 } P;
Chris@10 32
Chris@10 33
Chris@10 34 static void cdot(INT n, const E *x, const R *w,
Chris@10 35 R *or0, R *oi0, R *or1, R *oi1)
Chris@10 36 {
Chris@10 37 INT i;
Chris@10 38
Chris@10 39 E rr = x[0], ri = 0, ir = x[1], ii = 0;
Chris@10 40 x += 2;
Chris@10 41 for (i = 1; i + i < n; ++i) {
Chris@10 42 rr += x[0] * w[0];
Chris@10 43 ir += x[1] * w[0];
Chris@10 44 ri += x[2] * w[1];
Chris@10 45 ii += x[3] * w[1];
Chris@10 46 x += 4; w += 2;
Chris@10 47 }
Chris@10 48 *or0 = rr + ii;
Chris@10 49 *oi0 = ir - ri;
Chris@10 50 *or1 = rr - ii;
Chris@10 51 *oi1 = ir + ri;
Chris@10 52 }
Chris@10 53
Chris@10 54 static void hartley(INT n, const R *xr, const R *xi, INT xs, E *o,
Chris@10 55 R *pr, R *pi)
Chris@10 56 {
Chris@10 57 INT i;
Chris@10 58 E sr, si;
Chris@10 59 o[0] = sr = xr[0]; o[1] = si = xi[0]; o += 2;
Chris@10 60 for (i = 1; i + i < n; ++i) {
Chris@10 61 sr += (o[0] = xr[i * xs] + xr[(n - i) * xs]);
Chris@10 62 si += (o[1] = xi[i * xs] + xi[(n - i) * xs]);
Chris@10 63 o[2] = xr[i * xs] - xr[(n - i) * xs];
Chris@10 64 o[3] = xi[i * xs] - xi[(n - i) * xs];
Chris@10 65 o += 4;
Chris@10 66 }
Chris@10 67 *pr = sr;
Chris@10 68 *pi = si;
Chris@10 69 }
Chris@10 70
Chris@10 71 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
Chris@10 72 {
Chris@10 73 const P *ego = (const P *) ego_;
Chris@10 74 INT i;
Chris@10 75 INT n = ego->n, is = ego->is, os = ego->os;
Chris@10 76 const R *W = ego->td->W;
Chris@10 77 E *buf;
Chris@10 78 size_t bufsz = n * 2 * sizeof(E);
Chris@10 79
Chris@10 80 BUF_ALLOC(E *, buf, bufsz);
Chris@10 81 hartley(n, ri, ii, is, buf, ro, io);
Chris@10 82
Chris@10 83 for (i = 1; i + i < n; ++i) {
Chris@10 84 cdot(n, buf, W,
Chris@10 85 ro + i * os, io + i * os,
Chris@10 86 ro + (n - i) * os, io + (n - i) * os);
Chris@10 87 W += n - 1;
Chris@10 88 }
Chris@10 89
Chris@10 90 BUF_FREE(buf, bufsz);
Chris@10 91 }
Chris@10 92
Chris@10 93 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@10 94 {
Chris@10 95 P *ego = (P *) ego_;
Chris@10 96 static const tw_instr half_tw[] = {
Chris@10 97 { TW_HALF, 1, 0 },
Chris@10 98 { TW_NEXT, 1, 0 }
Chris@10 99 };
Chris@10 100
Chris@10 101 X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n,
Chris@10 102 (ego->n - 1) / 2);
Chris@10 103 }
Chris@10 104
Chris@10 105 static void print(const plan *ego_, printer *p)
Chris@10 106 {
Chris@10 107 const P *ego = (const P *) ego_;
Chris@10 108
Chris@10 109 p->print(p, "(dft-generic-%D)", ego->n);
Chris@10 110 }
Chris@10 111
Chris@10 112 static int applicable(const solver *ego, const problem *p_,
Chris@10 113 const planner *plnr)
Chris@10 114 {
Chris@10 115 const problem_dft *p = (const problem_dft *) p_;
Chris@10 116 UNUSED(ego);
Chris@10 117
Chris@10 118 return (1
Chris@10 119 && p->sz->rnk == 1
Chris@10 120 && p->vecsz->rnk == 0
Chris@10 121 && (p->sz->dims[0].n % 2) == 1
Chris@10 122 && CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD)
Chris@10 123 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW)
Chris@10 124 && X(is_prime)(p->sz->dims[0].n)
Chris@10 125 );
Chris@10 126 }
Chris@10 127
Chris@10 128 static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
Chris@10 129 {
Chris@10 130 const problem_dft *p;
Chris@10 131 P *pln;
Chris@10 132 INT n;
Chris@10 133
Chris@10 134 static const plan_adt padt = {
Chris@10 135 X(dft_solve), awake, print, X(plan_null_destroy)
Chris@10 136 };
Chris@10 137
Chris@10 138 if (!applicable(ego, p_, plnr))
Chris@10 139 return (plan *)0;
Chris@10 140
Chris@10 141 pln = MKPLAN_DFT(P, &padt, apply);
Chris@10 142
Chris@10 143 p = (const problem_dft *) p_;
Chris@10 144 pln->n = n = p->sz->dims[0].n;
Chris@10 145 pln->is = p->sz->dims[0].is;
Chris@10 146 pln->os = p->sz->dims[0].os;
Chris@10 147 pln->td = 0;
Chris@10 148
Chris@10 149 pln->super.super.ops.add = (n-1) * 5;
Chris@10 150 pln->super.super.ops.mul = 0;
Chris@10 151 pln->super.super.ops.fma = (n-1) * (n-1) ;
Chris@10 152 #if 0 /* these are nice pipelined sequential loads and should cost nothing */
Chris@10 153 pln->super.super.ops.other = (n-1)*(4 + 1 + 2 * (n-1)); /* approximate */
Chris@10 154 #endif
Chris@10 155
Chris@10 156 return &(pln->super.super);
Chris@10 157 }
Chris@10 158
Chris@10 159 static solver *mksolver(void)
Chris@10 160 {
Chris@10 161 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
Chris@10 162 S *slv = MKSOLVER(S, &sadt);
Chris@10 163 return &(slv->super);
Chris@10 164 }
Chris@10 165
Chris@10 166 void X(dft_generic_register)(planner *p)
Chris@10 167 {
Chris@10 168 REGISTER_SOLVER(p, mksolver());
Chris@10 169 }