annotate osx/include/kj/tuple.h @ 140:59a8758c56b1

Add source for PortAudio stable v190600_20161030
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 03 Jan 2017 13:44:07 +0000
parents 41e769c91eca
children 0994c39f1e94
rev   line source
cannam@134 1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
cannam@134 2 // Licensed under the MIT License:
cannam@134 3 //
cannam@134 4 // Permission is hereby granted, free of charge, to any person obtaining a copy
cannam@134 5 // of this software and associated documentation files (the "Software"), to deal
cannam@134 6 // in the Software without restriction, including without limitation the rights
cannam@134 7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
cannam@134 8 // copies of the Software, and to permit persons to whom the Software is
cannam@134 9 // furnished to do so, subject to the following conditions:
cannam@134 10 //
cannam@134 11 // The above copyright notice and this permission notice shall be included in
cannam@134 12 // all copies or substantial portions of the Software.
cannam@134 13 //
cannam@134 14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
cannam@134 15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
cannam@134 16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
cannam@134 17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
cannam@134 18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
cannam@134 19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
cannam@134 20 // THE SOFTWARE.
cannam@134 21
cannam@134 22 // This file defines a notion of tuples that is simpler that `std::tuple`. It works as follows:
cannam@134 23 // - `kj::Tuple<A, B, C> is the type of a tuple of an A, a B, and a C.
cannam@134 24 // - `kj::tuple(a, b, c)` returns a tuple containing a, b, and c. If any of these are themselves
cannam@134 25 // tuples, they are flattened, so `tuple(a, tuple(b, c), d)` is equivalent to `tuple(a, b, c, d)`.
cannam@134 26 // - `kj::get<n>(myTuple)` returns the element of `myTuple` at index n.
cannam@134 27 // - `kj::apply(func, ...)` calls func on the following arguments after first expanding any tuples
cannam@134 28 // in the argument list. So `kj::apply(foo, a, tuple(b, c), d)` would call `foo(a, b, c, d)`.
cannam@134 29 //
cannam@134 30 // Note that:
cannam@134 31 // - The type `Tuple<T>` is a synonym for T. This is why `get` and `apply` are not members of the
cannam@134 32 // type.
cannam@134 33 // - It is illegal for an element of `Tuple` to itself be a tuple, as tuples are meant to be
cannam@134 34 // flattened.
cannam@134 35 // - It is illegal for an element of `Tuple` to be a reference, due to problems this would cause
cannam@134 36 // with type inference and `tuple()`.
cannam@134 37
cannam@134 38 #ifndef KJ_TUPLE_H_
cannam@134 39 #define KJ_TUPLE_H_
cannam@134 40
cannam@134 41 #if defined(__GNUC__) && !KJ_HEADER_WARNINGS
cannam@134 42 #pragma GCC system_header
cannam@134 43 #endif
cannam@134 44
cannam@134 45 #include "common.h"
cannam@134 46
cannam@134 47 namespace kj {
cannam@134 48 namespace _ { // private
cannam@134 49
cannam@134 50 template <size_t index, typename... T>
cannam@134 51 struct TypeByIndex_;
cannam@134 52 template <typename First, typename... Rest>
cannam@134 53 struct TypeByIndex_<0, First, Rest...> {
cannam@134 54 typedef First Type;
cannam@134 55 };
cannam@134 56 template <size_t index, typename First, typename... Rest>
cannam@134 57 struct TypeByIndex_<index, First, Rest...>
cannam@134 58 : public TypeByIndex_<index - 1, Rest...> {};
cannam@134 59 template <size_t index>
cannam@134 60 struct TypeByIndex_<index> {
cannam@134 61 static_assert(index != index, "Index out-of-range.");
cannam@134 62 };
cannam@134 63 template <size_t index, typename... T>
cannam@134 64 using TypeByIndex = typename TypeByIndex_<index, T...>::Type;
cannam@134 65 // Chose a particular type out of a list of types, by index.
cannam@134 66
cannam@134 67 template <size_t... s>
cannam@134 68 struct Indexes {};
cannam@134 69 // Dummy helper type that just encapsulates a sequential list of indexes, so that we can match
cannam@134 70 // templates against them and unpack them with '...'.
cannam@134 71
cannam@134 72 template <size_t end, size_t... prefix>
cannam@134 73 struct MakeIndexes_: public MakeIndexes_<end - 1, end - 1, prefix...> {};
cannam@134 74 template <size_t... prefix>
cannam@134 75 struct MakeIndexes_<0, prefix...> {
cannam@134 76 typedef Indexes<prefix...> Type;
cannam@134 77 };
cannam@134 78 template <size_t end>
cannam@134 79 using MakeIndexes = typename MakeIndexes_<end>::Type;
cannam@134 80 // Equivalent to Indexes<0, 1, 2, ..., end>.
cannam@134 81
cannam@134 82 template <typename... T>
cannam@134 83 class Tuple;
cannam@134 84 template <size_t index, typename... U>
cannam@134 85 inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
cannam@134 86 template <size_t index, typename... U>
cannam@134 87 inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
cannam@134 88 template <size_t index, typename... U>
cannam@134 89 inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
cannam@134 90
cannam@134 91 template <uint index, typename T>
cannam@134 92 struct TupleElement {
cannam@134 93 // Encapsulates one element of a tuple. The actual tuple implementation multiply-inherits
cannam@134 94 // from a TupleElement for each element, which is more efficient than a recursive definition.
cannam@134 95
cannam@134 96 T value;
cannam@134 97 TupleElement() = default;
cannam@134 98 constexpr inline TupleElement(const T& value): value(value) {}
cannam@134 99 constexpr inline TupleElement(T&& value): value(kj::mv(value)) {}
cannam@134 100 };
cannam@134 101
cannam@134 102 template <uint index, typename T>
cannam@134 103 struct TupleElement<index, T&> {
cannam@134 104 // If tuples contained references, one of the following would have to be true:
cannam@134 105 // - `auto x = tuple(y, z)` would cause x to be a tuple of references to y and z, which is
cannam@134 106 // probably not what you expected.
cannam@134 107 // - `Tuple<Foo&, Bar&> x = tuple(a, b)` would not work, because `tuple()` returned
cannam@134 108 // Tuple<Foo, Bar>.
cannam@134 109 static_assert(sizeof(T*) == 0, "Sorry, tuples cannot contain references.");
cannam@134 110 };
cannam@134 111
cannam@134 112 template <uint index, typename... T>
cannam@134 113 struct TupleElement<index, Tuple<T...>> {
cannam@134 114 static_assert(sizeof(Tuple<T...>*) == 0,
cannam@134 115 "Tuples cannot contain other tuples -- they should be flattened.");
cannam@134 116 };
cannam@134 117
cannam@134 118 template <typename Indexes, typename... Types>
cannam@134 119 struct TupleImpl;
cannam@134 120
cannam@134 121 template <size_t... indexes, typename... Types>
cannam@134 122 struct TupleImpl<Indexes<indexes...>, Types...>
cannam@134 123 : public TupleElement<indexes, Types>... {
cannam@134 124 // Implementation of Tuple. The only reason we need this rather than rolling this into class
cannam@134 125 // Tuple (below) is so that we can get "indexes" as an unpackable list.
cannam@134 126
cannam@134 127 static_assert(sizeof...(indexes) == sizeof...(Types), "Incorrect use of TupleImpl.");
cannam@134 128
cannam@134 129 template <typename... Params>
cannam@134 130 inline TupleImpl(Params&&... params)
cannam@134 131 : TupleElement<indexes, Types>(kj::fwd<Params>(params))... {
cannam@134 132 // Work around Clang 3.2 bug 16303 where this is not detected. (Unfortunately, Clang sometimes
cannam@134 133 // segfaults instead.)
cannam@134 134 static_assert(sizeof...(params) == sizeof...(indexes),
cannam@134 135 "Wrong number of parameters to Tuple constructor.");
cannam@134 136 }
cannam@134 137
cannam@134 138 template <typename... U>
cannam@134 139 constexpr inline TupleImpl(Tuple<U...>&& other)
cannam@134 140 : TupleElement<indexes, Types>(kj::mv(getImpl<indexes>(other)))... {}
cannam@134 141 template <typename... U>
cannam@134 142 constexpr inline TupleImpl(Tuple<U...>& other)
cannam@134 143 : TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
cannam@134 144 template <typename... U>
cannam@134 145 constexpr inline TupleImpl(const Tuple<U...>& other)
cannam@134 146 : TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
cannam@134 147 };
cannam@134 148
cannam@134 149 struct MakeTupleFunc;
cannam@134 150
cannam@134 151 template <typename... T>
cannam@134 152 class Tuple {
cannam@134 153 // The actual Tuple class (used for tuples of size other than 1).
cannam@134 154
cannam@134 155 public:
cannam@134 156 template <typename... U>
cannam@134 157 constexpr inline Tuple(Tuple<U...>&& other): impl(kj::mv(other)) {}
cannam@134 158 template <typename... U>
cannam@134 159 constexpr inline Tuple(Tuple<U...>& other): impl(other) {}
cannam@134 160 template <typename... U>
cannam@134 161 constexpr inline Tuple(const Tuple<U...>& other): impl(other) {}
cannam@134 162
cannam@134 163 private:
cannam@134 164 template <typename... Params>
cannam@134 165 constexpr Tuple(Params&&... params): impl(kj::fwd<Params>(params)...) {}
cannam@134 166
cannam@134 167 TupleImpl<MakeIndexes<sizeof...(T)>, T...> impl;
cannam@134 168
cannam@134 169 template <size_t index, typename... U>
cannam@134 170 friend inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
cannam@134 171 template <size_t index, typename... U>
cannam@134 172 friend inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
cannam@134 173 template <size_t index, typename... U>
cannam@134 174 friend inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
cannam@134 175 friend struct MakeTupleFunc;
cannam@134 176 };
cannam@134 177
cannam@134 178 template <>
cannam@134 179 class Tuple<> {
cannam@134 180 // Simplified zero-member version of Tuple. In particular this is important to make sure that
cannam@134 181 // Tuple<>() is constexpr.
cannam@134 182 };
cannam@134 183
cannam@134 184 template <typename T>
cannam@134 185 class Tuple<T>;
cannam@134 186 // Single-element tuple should never be used. The public API should ensure this.
cannam@134 187
cannam@134 188 template <size_t index, typename... T>
cannam@134 189 inline TypeByIndex<index, T...>& getImpl(Tuple<T...>& tuple) {
cannam@134 190 // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
cannam@134 191 static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
cannam@134 192 return implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
cannam@134 193 }
cannam@134 194 template <size_t index, typename... T>
cannam@134 195 inline TypeByIndex<index, T...>&& getImpl(Tuple<T...>&& tuple) {
cannam@134 196 // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
cannam@134 197 static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
cannam@134 198 return kj::mv(implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value);
cannam@134 199 }
cannam@134 200 template <size_t index, typename... T>
cannam@134 201 inline const TypeByIndex<index, T...>& getImpl(const Tuple<T...>& tuple) {
cannam@134 202 // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
cannam@134 203 static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
cannam@134 204 return implicitCast<const TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
cannam@134 205 }
cannam@134 206 template <size_t index, typename T>
cannam@134 207 inline T&& getImpl(T&& value) {
cannam@134 208 // Get member of a Tuple by index, e.g. `getImpl<2>(myTuple)`.
cannam@134 209
cannam@134 210 // Non-tuples are equivalent to one-element tuples.
cannam@134 211 static_assert(index == 0, "Tuple element index out-of-bounds.");
cannam@134 212 return kj::fwd<T>(value);
cannam@134 213 }
cannam@134 214
cannam@134 215
cannam@134 216 template <typename Func, typename SoFar, typename... T>
cannam@134 217 struct ExpandAndApplyResult_;
cannam@134 218 // Template which computes the return type of applying Func to T... after flattening tuples.
cannam@134 219 // SoFar starts as Tuple<> and accumulates the flattened parameter types -- so after this template
cannam@134 220 // is recursively expanded, T... is empty and SoFar is a Tuple containing all the parameters.
cannam@134 221
cannam@134 222 template <typename Func, typename First, typename... Rest, typename... T>
cannam@134 223 struct ExpandAndApplyResult_<Func, Tuple<T...>, First, Rest...>
cannam@134 224 : public ExpandAndApplyResult_<Func, Tuple<T..., First>, Rest...> {};
cannam@134 225 template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
cannam@134 226 struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>, Rest...>
cannam@134 227 : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&&..., Rest...> {};
cannam@134 228 template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
cannam@134 229 struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>&, Rest...>
cannam@134 230 : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&..., Rest...> {};
cannam@134 231 template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
cannam@134 232 struct ExpandAndApplyResult_<Func, Tuple<T...>, const Tuple<FirstTypes...>&, Rest...>
cannam@134 233 : public ExpandAndApplyResult_<Func, Tuple<T...>, const FirstTypes&..., Rest...> {};
cannam@134 234 template <typename Func, typename... T>
cannam@134 235 struct ExpandAndApplyResult_<Func, Tuple<T...>> {
cannam@134 236 typedef decltype(instance<Func>()(instance<T&&>()...)) Type;
cannam@134 237 };
cannam@134 238 template <typename Func, typename... T>
cannam@134 239 using ExpandAndApplyResult = typename ExpandAndApplyResult_<Func, Tuple<>, T...>::Type;
cannam@134 240 // Computes the expected return type of `expandAndApply()`.
cannam@134 241
cannam@134 242 template <typename Func>
cannam@134 243 inline auto expandAndApply(Func&& func) -> ExpandAndApplyResult<Func> {
cannam@134 244 return func();
cannam@134 245 }
cannam@134 246
cannam@134 247 template <typename Func, typename First, typename... Rest>
cannam@134 248 struct ExpandAndApplyFunc {
cannam@134 249 Func&& func;
cannam@134 250 First&& first;
cannam@134 251 ExpandAndApplyFunc(Func&& func, First&& first)
cannam@134 252 : func(kj::fwd<Func>(func)), first(kj::fwd<First>(first)) {}
cannam@134 253 template <typename... T>
cannam@134 254 auto operator()(T&&... params)
cannam@134 255 -> decltype(this->func(kj::fwd<First>(first), kj::fwd<T>(params)...)) {
cannam@134 256 return this->func(kj::fwd<First>(first), kj::fwd<T>(params)...);
cannam@134 257 }
cannam@134 258 };
cannam@134 259
cannam@134 260 template <typename Func, typename First, typename... Rest>
cannam@134 261 inline auto expandAndApply(Func&& func, First&& first, Rest&&... rest)
cannam@134 262 -> ExpandAndApplyResult<Func, First, Rest...> {
cannam@134 263
cannam@134 264 return expandAndApply(
cannam@134 265 ExpandAndApplyFunc<Func, First, Rest...>(kj::fwd<Func>(func), kj::fwd<First>(first)),
cannam@134 266 kj::fwd<Rest>(rest)...);
cannam@134 267 }
cannam@134 268
cannam@134 269 template <typename Func, typename... FirstTypes, typename... Rest>
cannam@134 270 inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
cannam@134 271 -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
cannam@134 272 return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
cannam@134 273 kj::fwd<Func>(func), kj::mv(first), kj::fwd<Rest>(rest)...);
cannam@134 274 }
cannam@134 275
cannam@134 276 template <typename Func, typename... FirstTypes, typename... Rest>
cannam@134 277 inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>& first, Rest&&... rest)
cannam@134 278 -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
cannam@134 279 return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
cannam@134 280 kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
cannam@134 281 }
cannam@134 282
cannam@134 283 template <typename Func, typename... FirstTypes, typename... Rest>
cannam@134 284 inline auto expandAndApply(Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
cannam@134 285 -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
cannam@134 286 return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
cannam@134 287 kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
cannam@134 288 }
cannam@134 289
cannam@134 290 template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
cannam@134 291 inline auto expandAndApplyWithIndexes(
cannam@134 292 Indexes<indexes...>, Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
cannam@134 293 -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
cannam@134 294 return expandAndApply(kj::fwd<Func>(func), kj::mv(getImpl<indexes>(first))...,
cannam@134 295 kj::fwd<Rest>(rest)...);
cannam@134 296 }
cannam@134 297
cannam@134 298 template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
cannam@134 299 inline auto expandAndApplyWithIndexes(
cannam@134 300 Indexes<indexes...>, Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
cannam@134 301 -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
cannam@134 302 return expandAndApply(kj::fwd<Func>(func), getImpl<indexes>(first)...,
cannam@134 303 kj::fwd<Rest>(rest)...);
cannam@134 304 }
cannam@134 305
cannam@134 306 struct MakeTupleFunc {
cannam@134 307 template <typename... Params>
cannam@134 308 Tuple<Decay<Params>...> operator()(Params&&... params) {
cannam@134 309 return Tuple<Decay<Params>...>(kj::fwd<Params>(params)...);
cannam@134 310 }
cannam@134 311 template <typename Param>
cannam@134 312 Decay<Param> operator()(Param&& param) {
cannam@134 313 return kj::fwd<Param>(param);
cannam@134 314 }
cannam@134 315 };
cannam@134 316
cannam@134 317 } // namespace _ (private)
cannam@134 318
cannam@134 319 template <typename... T> struct Tuple_ { typedef _::Tuple<T...> Type; };
cannam@134 320 template <typename T> struct Tuple_<T> { typedef T Type; };
cannam@134 321
cannam@134 322 template <typename... T> using Tuple = typename Tuple_<T...>::Type;
cannam@134 323 // Tuple type. `Tuple<T>` (i.e. a single-element tuple) is a synonym for `T`. Tuples of size
cannam@134 324 // other than 1 expand to an internal type. Either way, you can construct a Tuple using
cannam@134 325 // `kj::tuple(...)`, get an element by index `i` using `kj::get<i>(myTuple)`, and expand the tuple
cannam@134 326 // as arguments to a function using `kj::apply(func, myTuple)`.
cannam@134 327 //
cannam@134 328 // Tuples are always flat -- that is, no element of a Tuple is ever itself a Tuple. If you
cannam@134 329 // construct a tuple from other tuples, the elements are flattened and concatenated.
cannam@134 330
cannam@134 331 template <typename... Params>
cannam@134 332 inline auto tuple(Params&&... params)
cannam@134 333 -> decltype(_::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...)) {
cannam@134 334 // Construct a new tuple from the given values. Any tuples in the argument list will be
cannam@134 335 // flattened into the result.
cannam@134 336 return _::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...);
cannam@134 337 }
cannam@134 338
cannam@134 339 template <size_t index, typename Tuple>
cannam@134 340 inline auto get(Tuple&& tuple) -> decltype(_::getImpl<index>(kj::fwd<Tuple>(tuple))) {
cannam@134 341 // Unpack and return the tuple element at the given index. The index is specified as a template
cannam@134 342 // parameter, e.g. `kj::get<3>(myTuple)`.
cannam@134 343 return _::getImpl<index>(kj::fwd<Tuple>(tuple));
cannam@134 344 }
cannam@134 345
cannam@134 346 template <typename Func, typename... Params>
cannam@134 347 inline auto apply(Func&& func, Params&&... params)
cannam@134 348 -> decltype(_::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...)) {
cannam@134 349 // Apply a function to some arguments, expanding tuples into separate arguments.
cannam@134 350 return _::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...);
cannam@134 351 }
cannam@134 352
cannam@134 353 template <typename T> struct TupleSize_ { static constexpr size_t size = 1; };
cannam@134 354 template <typename... T> struct TupleSize_<_::Tuple<T...>> {
cannam@134 355 static constexpr size_t size = sizeof...(T);
cannam@134 356 };
cannam@134 357
cannam@134 358 template <typename T>
cannam@134 359 constexpr size_t tupleSize() { return TupleSize_<T>::size; }
cannam@134 360 // Returns size of the tuple T.
cannam@134 361
cannam@134 362 } // namespace kj
cannam@134 363
cannam@134 364 #endif // KJ_TUPLE_H_