annotate src/fftw-3.3.5/dft/simd/common/t2sv_8.c @ 157:570d27da3fb5

Update exclusion list
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 25 Jan 2019 13:49:22 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:45:18 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-dft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 8 -name t2sv_8 -include ts.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 74 FP additions, 50 FP multiplications,
cannam@127 32 * (or, 44 additions, 20 multiplications, 30 fused multiply/add),
cannam@127 33 * 64 stack variables, 1 constants, and 32 memory accesses
cannam@127 34 */
cannam@127 35 #include "ts.h"
cannam@127 36
cannam@127 37 static void t2sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@127 40 {
cannam@127 41 INT m;
cannam@127 42 for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
cannam@127 43 V T1m, T1l, T1k, T1u, T1n, T1o;
cannam@127 44 {
cannam@127 45 V T2, T3, Tl, Tn, T5, T6;
cannam@127 46 T2 = LDW(&(W[0]));
cannam@127 47 T3 = LDW(&(W[TWVL * 2]));
cannam@127 48 Tl = LDW(&(W[TWVL * 4]));
cannam@127 49 Tn = LDW(&(W[TWVL * 5]));
cannam@127 50 T5 = LDW(&(W[TWVL * 1]));
cannam@127 51 T6 = LDW(&(W[TWVL * 3]));
cannam@127 52 {
cannam@127 53 V T1, T1s, TK, T1r, Td, Tk, TG, TC, TY, Tu, TW, TL, TM, TO, TQ;
cannam@127 54 V Tx, Tz, TD, TH;
cannam@127 55 {
cannam@127 56 V T8, T4, Tm, Tr, Tc, Ta;
cannam@127 57 T1 = LD(&(ri[0]), ms, &(ri[0]));
cannam@127 58 T1s = LD(&(ii[0]), ms, &(ii[0]));
cannam@127 59 T8 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
cannam@127 60 T4 = VMUL(T2, T3);
cannam@127 61 Tm = VMUL(T2, Tl);
cannam@127 62 Tr = VMUL(T2, Tn);
cannam@127 63 Tc = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
cannam@127 64 Ta = VMUL(T2, T6);
cannam@127 65 {
cannam@127 66 V Tp, Tt, Tg, T7, Tf, To, Ts, Ti, Tb, Tj;
cannam@127 67 Tp = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
cannam@127 68 Tt = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
cannam@127 69 Tg = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
cannam@127 70 T7 = VFNMS(T5, T6, T4);
cannam@127 71 Tf = VFMA(T5, T6, T4);
cannam@127 72 To = VFMA(T5, Tn, Tm);
cannam@127 73 Ts = VFNMS(T5, Tl, Tr);
cannam@127 74 Ti = VFNMS(T5, T3, Ta);
cannam@127 75 Tb = VFMA(T5, T3, Ta);
cannam@127 76 Tj = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
cannam@127 77 TK = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
cannam@127 78 {
cannam@127 79 V T1q, T9, Th, TF;
cannam@127 80 T1q = VMUL(T7, Tc);
cannam@127 81 T9 = VMUL(T7, T8);
cannam@127 82 Th = VMUL(Tf, Tg);
cannam@127 83 TF = VMUL(Tf, Tn);
cannam@127 84 {
cannam@127 85 V TB, TX, Tq, TV;
cannam@127 86 TB = VMUL(Tf, Tl);
cannam@127 87 TX = VMUL(To, Tt);
cannam@127 88 Tq = VMUL(To, Tp);
cannam@127 89 TV = VMUL(Tf, Tj);
cannam@127 90 T1r = VFNMS(Tb, T8, T1q);
cannam@127 91 Td = VFMA(Tb, Tc, T9);
cannam@127 92 Tk = VFMA(Ti, Tj, Th);
cannam@127 93 TG = VFNMS(Ti, Tl, TF);
cannam@127 94 TC = VFMA(Ti, Tn, TB);
cannam@127 95 TY = VFNMS(Ts, Tp, TX);
cannam@127 96 Tu = VFMA(Ts, Tt, Tq);
cannam@127 97 TW = VFNMS(Ti, Tg, TV);
cannam@127 98 TL = VMUL(Tl, TK);
cannam@127 99 }
cannam@127 100 }
cannam@127 101 TM = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
cannam@127 102 TO = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
cannam@127 103 TQ = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
cannam@127 104 Tx = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
cannam@127 105 Tz = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
cannam@127 106 TD = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
cannam@127 107 TH = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
cannam@127 108 }
cannam@127 109 }
cannam@127 110 {
cannam@127 111 V Te, T1p, T1g, T10, TS, T18, T1d, T1t, T1x, T1y, Tv, TJ, T11, T16;
cannam@127 112 {
cannam@127 113 V TN, T1a, TR, T1c, TA, T13, TI, T15;
cannam@127 114 {
cannam@127 115 V TU, T19, TP, T1b, Ty, T12, TE, T14, TZ;
cannam@127 116 TU = VSUB(T1, Td);
cannam@127 117 Te = VADD(T1, Td);
cannam@127 118 TN = VFMA(Tn, TM, TL);
cannam@127 119 T19 = VMUL(Tl, TM);
cannam@127 120 TP = VMUL(T3, TO);
cannam@127 121 T1b = VMUL(T3, TQ);
cannam@127 122 Ty = VMUL(T2, Tx);
cannam@127 123 T12 = VMUL(T2, Tz);
cannam@127 124 TE = VMUL(TC, TD);
cannam@127 125 T14 = VMUL(TC, TH);
cannam@127 126 T1p = VADD(TW, TY);
cannam@127 127 TZ = VSUB(TW, TY);
cannam@127 128 T1a = VFNMS(Tn, TK, T19);
cannam@127 129 TR = VFMA(T6, TQ, TP);
cannam@127 130 T1c = VFNMS(T6, TO, T1b);
cannam@127 131 TA = VFMA(T5, Tz, Ty);
cannam@127 132 T13 = VFNMS(T5, Tx, T12);
cannam@127 133 TI = VFMA(TG, TH, TE);
cannam@127 134 T15 = VFNMS(TG, TD, T14);
cannam@127 135 T1g = VSUB(TU, TZ);
cannam@127 136 T10 = VADD(TU, TZ);
cannam@127 137 }
cannam@127 138 TS = VADD(TN, TR);
cannam@127 139 T18 = VSUB(TN, TR);
cannam@127 140 T1d = VSUB(T1a, T1c);
cannam@127 141 T1m = VADD(T1a, T1c);
cannam@127 142 T1t = VADD(T1r, T1s);
cannam@127 143 T1x = VSUB(T1s, T1r);
cannam@127 144 T1y = VSUB(Tk, Tu);
cannam@127 145 Tv = VADD(Tk, Tu);
cannam@127 146 TJ = VADD(TA, TI);
cannam@127 147 T11 = VSUB(TA, TI);
cannam@127 148 T16 = VSUB(T13, T15);
cannam@127 149 T1l = VADD(T13, T15);
cannam@127 150 }
cannam@127 151 {
cannam@127 152 V Tw, T1w, T1v, TT;
cannam@127 153 {
cannam@127 154 V T1i, T1e, T1B, T1z, T1h, T17;
cannam@127 155 T1i = VADD(T18, T1d);
cannam@127 156 T1e = VSUB(T18, T1d);
cannam@127 157 T1B = VADD(T1y, T1x);
cannam@127 158 T1z = VSUB(T1x, T1y);
cannam@127 159 T1h = VSUB(T16, T11);
cannam@127 160 T17 = VADD(T11, T16);
cannam@127 161 T1k = VSUB(Te, Tv);
cannam@127 162 Tw = VADD(Te, Tv);
cannam@127 163 {
cannam@127 164 V T1A, T1j, T1C, T1f;
cannam@127 165 T1A = VADD(T1h, T1i);
cannam@127 166 T1j = VSUB(T1h, T1i);
cannam@127 167 T1C = VSUB(T1e, T17);
cannam@127 168 T1f = VADD(T17, T1e);
cannam@127 169 T1w = VSUB(T1t, T1p);
cannam@127 170 T1u = VADD(T1p, T1t);
cannam@127 171 T1v = VSUB(TS, TJ);
cannam@127 172 TT = VADD(TJ, TS);
cannam@127 173 ST(&(ii[WS(rs, 1)]), VFMA(LDK(KP707106781), T1A, T1z), ms, &(ii[WS(rs, 1)]));
cannam@127 174 ST(&(ii[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1A, T1z), ms, &(ii[WS(rs, 1)]));
cannam@127 175 ST(&(ri[WS(rs, 3)]), VFMA(LDK(KP707106781), T1j, T1g), ms, &(ri[WS(rs, 1)]));
cannam@127 176 ST(&(ri[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1j, T1g), ms, &(ri[WS(rs, 1)]));
cannam@127 177 ST(&(ii[WS(rs, 3)]), VFMA(LDK(KP707106781), T1C, T1B), ms, &(ii[WS(rs, 1)]));
cannam@127 178 ST(&(ii[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1C, T1B), ms, &(ii[WS(rs, 1)]));
cannam@127 179 ST(&(ri[WS(rs, 1)]), VFMA(LDK(KP707106781), T1f, T10), ms, &(ri[WS(rs, 1)]));
cannam@127 180 ST(&(ri[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1f, T10), ms, &(ri[WS(rs, 1)]));
cannam@127 181 }
cannam@127 182 }
cannam@127 183 ST(&(ri[WS(rs, 4)]), VSUB(Tw, TT), ms, &(ri[0]));
cannam@127 184 ST(&(ri[0]), VADD(Tw, TT), ms, &(ri[0]));
cannam@127 185 ST(&(ii[WS(rs, 6)]), VSUB(T1w, T1v), ms, &(ii[0]));
cannam@127 186 ST(&(ii[WS(rs, 2)]), VADD(T1v, T1w), ms, &(ii[0]));
cannam@127 187 }
cannam@127 188 }
cannam@127 189 }
cannam@127 190 }
cannam@127 191 T1n = VSUB(T1l, T1m);
cannam@127 192 T1o = VADD(T1l, T1m);
cannam@127 193 ST(&(ii[0]), VADD(T1o, T1u), ms, &(ii[0]));
cannam@127 194 ST(&(ii[WS(rs, 4)]), VSUB(T1u, T1o), ms, &(ii[0]));
cannam@127 195 ST(&(ri[WS(rs, 2)]), VADD(T1k, T1n), ms, &(ri[0]));
cannam@127 196 ST(&(ri[WS(rs, 6)]), VSUB(T1k, T1n), ms, &(ri[0]));
cannam@127 197 }
cannam@127 198 }
cannam@127 199 VLEAVE();
cannam@127 200 }
cannam@127 201
cannam@127 202 static const tw_instr twinstr[] = {
cannam@127 203 VTW(0, 1),
cannam@127 204 VTW(0, 3),
cannam@127 205 VTW(0, 7),
cannam@127 206 {TW_NEXT, (2 * VL), 0}
cannam@127 207 };
cannam@127 208
cannam@127 209 static const ct_desc desc = { 8, XSIMD_STRING("t2sv_8"), twinstr, &GENUS, {44, 20, 30, 0}, 0, 0, 0 };
cannam@127 210
cannam@127 211 void XSIMD(codelet_t2sv_8) (planner *p) {
cannam@127 212 X(kdft_dit_register) (p, t2sv_8, &desc);
cannam@127 213 }
cannam@127 214 #else /* HAVE_FMA */
cannam@127 215
cannam@127 216 /* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 8 -name t2sv_8 -include ts.h */
cannam@127 217
cannam@127 218 /*
cannam@127 219 * This function contains 74 FP additions, 44 FP multiplications,
cannam@127 220 * (or, 56 additions, 26 multiplications, 18 fused multiply/add),
cannam@127 221 * 42 stack variables, 1 constants, and 32 memory accesses
cannam@127 222 */
cannam@127 223 #include "ts.h"
cannam@127 224
cannam@127 225 static void t2sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 226 {
cannam@127 227 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@127 228 {
cannam@127 229 INT m;
cannam@127 230 for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
cannam@127 231 V T2, T5, T3, T6, T8, Tc, Tg, Ti, Tl, Tm, Tn, Tz, Tp, Tx;
cannam@127 232 {
cannam@127 233 V T4, Tb, T7, Ta;
cannam@127 234 T2 = LDW(&(W[0]));
cannam@127 235 T5 = LDW(&(W[TWVL * 1]));
cannam@127 236 T3 = LDW(&(W[TWVL * 2]));
cannam@127 237 T6 = LDW(&(W[TWVL * 3]));
cannam@127 238 T4 = VMUL(T2, T3);
cannam@127 239 Tb = VMUL(T5, T3);
cannam@127 240 T7 = VMUL(T5, T6);
cannam@127 241 Ta = VMUL(T2, T6);
cannam@127 242 T8 = VSUB(T4, T7);
cannam@127 243 Tc = VADD(Ta, Tb);
cannam@127 244 Tg = VADD(T4, T7);
cannam@127 245 Ti = VSUB(Ta, Tb);
cannam@127 246 Tl = LDW(&(W[TWVL * 4]));
cannam@127 247 Tm = LDW(&(W[TWVL * 5]));
cannam@127 248 Tn = VFMA(T2, Tl, VMUL(T5, Tm));
cannam@127 249 Tz = VFNMS(Ti, Tl, VMUL(Tg, Tm));
cannam@127 250 Tp = VFNMS(T5, Tl, VMUL(T2, Tm));
cannam@127 251 Tx = VFMA(Tg, Tl, VMUL(Ti, Tm));
cannam@127 252 }
cannam@127 253 {
cannam@127 254 V Tf, T1i, TL, T1d, TJ, T17, TV, TY, Ts, T1j, TO, T1a, TC, T16, TQ;
cannam@127 255 V TT;
cannam@127 256 {
cannam@127 257 V T1, T1c, Te, T1b, T9, Td;
cannam@127 258 T1 = LD(&(ri[0]), ms, &(ri[0]));
cannam@127 259 T1c = LD(&(ii[0]), ms, &(ii[0]));
cannam@127 260 T9 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
cannam@127 261 Td = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
cannam@127 262 Te = VFMA(T8, T9, VMUL(Tc, Td));
cannam@127 263 T1b = VFNMS(Tc, T9, VMUL(T8, Td));
cannam@127 264 Tf = VADD(T1, Te);
cannam@127 265 T1i = VSUB(T1c, T1b);
cannam@127 266 TL = VSUB(T1, Te);
cannam@127 267 T1d = VADD(T1b, T1c);
cannam@127 268 }
cannam@127 269 {
cannam@127 270 V TF, TW, TI, TX;
cannam@127 271 {
cannam@127 272 V TD, TE, TG, TH;
cannam@127 273 TD = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
cannam@127 274 TE = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
cannam@127 275 TF = VFMA(Tl, TD, VMUL(Tm, TE));
cannam@127 276 TW = VFNMS(Tm, TD, VMUL(Tl, TE));
cannam@127 277 TG = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
cannam@127 278 TH = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
cannam@127 279 TI = VFMA(T3, TG, VMUL(T6, TH));
cannam@127 280 TX = VFNMS(T6, TG, VMUL(T3, TH));
cannam@127 281 }
cannam@127 282 TJ = VADD(TF, TI);
cannam@127 283 T17 = VADD(TW, TX);
cannam@127 284 TV = VSUB(TF, TI);
cannam@127 285 TY = VSUB(TW, TX);
cannam@127 286 }
cannam@127 287 {
cannam@127 288 V Tk, TM, Tr, TN;
cannam@127 289 {
cannam@127 290 V Th, Tj, To, Tq;
cannam@127 291 Th = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
cannam@127 292 Tj = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
cannam@127 293 Tk = VFMA(Tg, Th, VMUL(Ti, Tj));
cannam@127 294 TM = VFNMS(Ti, Th, VMUL(Tg, Tj));
cannam@127 295 To = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
cannam@127 296 Tq = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
cannam@127 297 Tr = VFMA(Tn, To, VMUL(Tp, Tq));
cannam@127 298 TN = VFNMS(Tp, To, VMUL(Tn, Tq));
cannam@127 299 }
cannam@127 300 Ts = VADD(Tk, Tr);
cannam@127 301 T1j = VSUB(Tk, Tr);
cannam@127 302 TO = VSUB(TM, TN);
cannam@127 303 T1a = VADD(TM, TN);
cannam@127 304 }
cannam@127 305 {
cannam@127 306 V Tw, TR, TB, TS;
cannam@127 307 {
cannam@127 308 V Tu, Tv, Ty, TA;
cannam@127 309 Tu = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
cannam@127 310 Tv = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
cannam@127 311 Tw = VFMA(T2, Tu, VMUL(T5, Tv));
cannam@127 312 TR = VFNMS(T5, Tu, VMUL(T2, Tv));
cannam@127 313 Ty = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
cannam@127 314 TA = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
cannam@127 315 TB = VFMA(Tx, Ty, VMUL(Tz, TA));
cannam@127 316 TS = VFNMS(Tz, Ty, VMUL(Tx, TA));
cannam@127 317 }
cannam@127 318 TC = VADD(Tw, TB);
cannam@127 319 T16 = VADD(TR, TS);
cannam@127 320 TQ = VSUB(Tw, TB);
cannam@127 321 TT = VSUB(TR, TS);
cannam@127 322 }
cannam@127 323 {
cannam@127 324 V Tt, TK, T1f, T1g;
cannam@127 325 Tt = VADD(Tf, Ts);
cannam@127 326 TK = VADD(TC, TJ);
cannam@127 327 ST(&(ri[WS(rs, 4)]), VSUB(Tt, TK), ms, &(ri[0]));
cannam@127 328 ST(&(ri[0]), VADD(Tt, TK), ms, &(ri[0]));
cannam@127 329 {
cannam@127 330 V T19, T1e, T15, T18;
cannam@127 331 T19 = VADD(T16, T17);
cannam@127 332 T1e = VADD(T1a, T1d);
cannam@127 333 ST(&(ii[0]), VADD(T19, T1e), ms, &(ii[0]));
cannam@127 334 ST(&(ii[WS(rs, 4)]), VSUB(T1e, T19), ms, &(ii[0]));
cannam@127 335 T15 = VSUB(Tf, Ts);
cannam@127 336 T18 = VSUB(T16, T17);
cannam@127 337 ST(&(ri[WS(rs, 6)]), VSUB(T15, T18), ms, &(ri[0]));
cannam@127 338 ST(&(ri[WS(rs, 2)]), VADD(T15, T18), ms, &(ri[0]));
cannam@127 339 }
cannam@127 340 T1f = VSUB(TJ, TC);
cannam@127 341 T1g = VSUB(T1d, T1a);
cannam@127 342 ST(&(ii[WS(rs, 2)]), VADD(T1f, T1g), ms, &(ii[0]));
cannam@127 343 ST(&(ii[WS(rs, 6)]), VSUB(T1g, T1f), ms, &(ii[0]));
cannam@127 344 {
cannam@127 345 V T11, T1k, T14, T1h, T12, T13;
cannam@127 346 T11 = VSUB(TL, TO);
cannam@127 347 T1k = VSUB(T1i, T1j);
cannam@127 348 T12 = VSUB(TT, TQ);
cannam@127 349 T13 = VADD(TV, TY);
cannam@127 350 T14 = VMUL(LDK(KP707106781), VSUB(T12, T13));
cannam@127 351 T1h = VMUL(LDK(KP707106781), VADD(T12, T13));
cannam@127 352 ST(&(ri[WS(rs, 7)]), VSUB(T11, T14), ms, &(ri[WS(rs, 1)]));
cannam@127 353 ST(&(ii[WS(rs, 5)]), VSUB(T1k, T1h), ms, &(ii[WS(rs, 1)]));
cannam@127 354 ST(&(ri[WS(rs, 3)]), VADD(T11, T14), ms, &(ri[WS(rs, 1)]));
cannam@127 355 ST(&(ii[WS(rs, 1)]), VADD(T1h, T1k), ms, &(ii[WS(rs, 1)]));
cannam@127 356 }
cannam@127 357 {
cannam@127 358 V TP, T1m, T10, T1l, TU, TZ;
cannam@127 359 TP = VADD(TL, TO);
cannam@127 360 T1m = VADD(T1j, T1i);
cannam@127 361 TU = VADD(TQ, TT);
cannam@127 362 TZ = VSUB(TV, TY);
cannam@127 363 T10 = VMUL(LDK(KP707106781), VADD(TU, TZ));
cannam@127 364 T1l = VMUL(LDK(KP707106781), VSUB(TZ, TU));
cannam@127 365 ST(&(ri[WS(rs, 5)]), VSUB(TP, T10), ms, &(ri[WS(rs, 1)]));
cannam@127 366 ST(&(ii[WS(rs, 7)]), VSUB(T1m, T1l), ms, &(ii[WS(rs, 1)]));
cannam@127 367 ST(&(ri[WS(rs, 1)]), VADD(TP, T10), ms, &(ri[WS(rs, 1)]));
cannam@127 368 ST(&(ii[WS(rs, 3)]), VADD(T1l, T1m), ms, &(ii[WS(rs, 1)]));
cannam@127 369 }
cannam@127 370 }
cannam@127 371 }
cannam@127 372 }
cannam@127 373 }
cannam@127 374 VLEAVE();
cannam@127 375 }
cannam@127 376
cannam@127 377 static const tw_instr twinstr[] = {
cannam@127 378 VTW(0, 1),
cannam@127 379 VTW(0, 3),
cannam@127 380 VTW(0, 7),
cannam@127 381 {TW_NEXT, (2 * VL), 0}
cannam@127 382 };
cannam@127 383
cannam@127 384 static const ct_desc desc = { 8, XSIMD_STRING("t2sv_8"), twinstr, &GENUS, {56, 26, 18, 0}, 0, 0, 0 };
cannam@127 385
cannam@127 386 void XSIMD(codelet_t2sv_8) (planner *p) {
cannam@127 387 X(kdft_dit_register) (p, t2sv_8, &desc);
cannam@127 388 }
cannam@127 389 #endif /* HAVE_FMA */