annotate src/fftw-3.3.3/libbench2/verify-lib.c @ 36:55ece8862b6d

Merge
author Chris Cannam
date Wed, 11 Mar 2015 13:32:44 +0000
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21
Chris@10 22 #include "verify.h"
Chris@10 23 #include <math.h>
Chris@10 24 #include <stdlib.h>
Chris@10 25 #include <stdio.h>
Chris@10 26
Chris@10 27 /*
Chris@10 28 * Utility functions:
Chris@10 29 */
Chris@10 30 static double dabs(double x) { return (x < 0.0) ? -x : x; }
Chris@10 31 static double dmin(double x, double y) { return (x < y) ? x : y; }
Chris@10 32 static double norm2(double x, double y) { return dmax(dabs(x), dabs(y)); }
Chris@10 33
Chris@10 34 double dmax(double x, double y) { return (x > y) ? x : y; }
Chris@10 35
Chris@10 36 static double aerror(C *a, C *b, int n)
Chris@10 37 {
Chris@10 38 if (n > 0) {
Chris@10 39 /* compute the relative Linf error */
Chris@10 40 double e = 0.0, mag = 0.0;
Chris@10 41 int i;
Chris@10 42
Chris@10 43 for (i = 0; i < n; ++i) {
Chris@10 44 e = dmax(e, norm2(c_re(a[i]) - c_re(b[i]),
Chris@10 45 c_im(a[i]) - c_im(b[i])));
Chris@10 46 mag = dmax(mag,
Chris@10 47 dmin(norm2(c_re(a[i]), c_im(a[i])),
Chris@10 48 norm2(c_re(b[i]), c_im(b[i]))));
Chris@10 49 }
Chris@10 50 e /= mag;
Chris@10 51
Chris@10 52 #ifdef HAVE_ISNAN
Chris@10 53 BENCH_ASSERT(!isnan(e));
Chris@10 54 #endif
Chris@10 55 return e;
Chris@10 56 } else
Chris@10 57 return 0.0;
Chris@10 58 }
Chris@10 59
Chris@10 60 #ifdef HAVE_DRAND48
Chris@10 61 # if defined(HAVE_DECL_DRAND48) && !HAVE_DECL_DRAND48
Chris@10 62 extern double drand48(void);
Chris@10 63 # endif
Chris@10 64 double mydrand(void)
Chris@10 65 {
Chris@10 66 return drand48() - 0.5;
Chris@10 67 }
Chris@10 68 #else
Chris@10 69 double mydrand(void)
Chris@10 70 {
Chris@10 71 double d = rand();
Chris@10 72 return (d / (double) RAND_MAX) - 0.5;
Chris@10 73 }
Chris@10 74 #endif
Chris@10 75
Chris@10 76 void arand(C *a, int n)
Chris@10 77 {
Chris@10 78 int i;
Chris@10 79
Chris@10 80 /* generate random inputs */
Chris@10 81 for (i = 0; i < n; ++i) {
Chris@10 82 c_re(a[i]) = mydrand();
Chris@10 83 c_im(a[i]) = mydrand();
Chris@10 84 }
Chris@10 85 }
Chris@10 86
Chris@10 87 /* make array real */
Chris@10 88 void mkreal(C *A, int n)
Chris@10 89 {
Chris@10 90 int i;
Chris@10 91
Chris@10 92 for (i = 0; i < n; ++i) {
Chris@10 93 c_im(A[i]) = 0.0;
Chris@10 94 }
Chris@10 95 }
Chris@10 96
Chris@10 97 static void assign_conj(C *Ac, C *A, int rank, const bench_iodim *dim, int stride)
Chris@10 98 {
Chris@10 99 if (rank == 0) {
Chris@10 100 c_re(*Ac) = c_re(*A);
Chris@10 101 c_im(*Ac) = -c_im(*A);
Chris@10 102 }
Chris@10 103 else {
Chris@10 104 int i, n0 = dim[rank - 1].n, s = stride;
Chris@10 105 rank -= 1;
Chris@10 106 stride *= n0;
Chris@10 107 assign_conj(Ac, A, rank, dim, stride);
Chris@10 108 for (i = 1; i < n0; ++i)
Chris@10 109 assign_conj(Ac + (n0 - i) * s, A + i * s, rank, dim, stride);
Chris@10 110 }
Chris@10 111 }
Chris@10 112
Chris@10 113 /* make array hermitian */
Chris@10 114 void mkhermitian(C *A, int rank, const bench_iodim *dim, int stride)
Chris@10 115 {
Chris@10 116 if (rank == 0)
Chris@10 117 c_im(*A) = 0.0;
Chris@10 118 else {
Chris@10 119 int i, n0 = dim[rank - 1].n, s = stride;
Chris@10 120 rank -= 1;
Chris@10 121 stride *= n0;
Chris@10 122 mkhermitian(A, rank, dim, stride);
Chris@10 123 for (i = 1; 2*i < n0; ++i)
Chris@10 124 assign_conj(A + (n0 - i) * s, A + i * s, rank, dim, stride);
Chris@10 125 if (2*i == n0)
Chris@10 126 mkhermitian(A + i * s, rank, dim, stride);
Chris@10 127 }
Chris@10 128 }
Chris@10 129
Chris@10 130 void mkhermitian1(C *a, int n)
Chris@10 131 {
Chris@10 132 bench_iodim d;
Chris@10 133
Chris@10 134 d.n = n;
Chris@10 135 d.is = d.os = 1;
Chris@10 136 mkhermitian(a, 1, &d, 1);
Chris@10 137 }
Chris@10 138
Chris@10 139 /* C = A */
Chris@10 140 void acopy(C *c, C *a, int n)
Chris@10 141 {
Chris@10 142 int i;
Chris@10 143
Chris@10 144 for (i = 0; i < n; ++i) {
Chris@10 145 c_re(c[i]) = c_re(a[i]);
Chris@10 146 c_im(c[i]) = c_im(a[i]);
Chris@10 147 }
Chris@10 148 }
Chris@10 149
Chris@10 150 /* C = A + B */
Chris@10 151 void aadd(C *c, C *a, C *b, int n)
Chris@10 152 {
Chris@10 153 int i;
Chris@10 154
Chris@10 155 for (i = 0; i < n; ++i) {
Chris@10 156 c_re(c[i]) = c_re(a[i]) + c_re(b[i]);
Chris@10 157 c_im(c[i]) = c_im(a[i]) + c_im(b[i]);
Chris@10 158 }
Chris@10 159 }
Chris@10 160
Chris@10 161 /* C = A - B */
Chris@10 162 void asub(C *c, C *a, C *b, int n)
Chris@10 163 {
Chris@10 164 int i;
Chris@10 165
Chris@10 166 for (i = 0; i < n; ++i) {
Chris@10 167 c_re(c[i]) = c_re(a[i]) - c_re(b[i]);
Chris@10 168 c_im(c[i]) = c_im(a[i]) - c_im(b[i]);
Chris@10 169 }
Chris@10 170 }
Chris@10 171
Chris@10 172 /* B = rotate left A (complex) */
Chris@10 173 void arol(C *b, C *a, int n, int nb, int na)
Chris@10 174 {
Chris@10 175 int i, ib, ia;
Chris@10 176
Chris@10 177 for (ib = 0; ib < nb; ++ib) {
Chris@10 178 for (i = 0; i < n - 1; ++i)
Chris@10 179 for (ia = 0; ia < na; ++ia) {
Chris@10 180 C *pb = b + (ib * n + i) * na + ia;
Chris@10 181 C *pa = a + (ib * n + i + 1) * na + ia;
Chris@10 182 c_re(*pb) = c_re(*pa);
Chris@10 183 c_im(*pb) = c_im(*pa);
Chris@10 184 }
Chris@10 185
Chris@10 186 for (ia = 0; ia < na; ++ia) {
Chris@10 187 C *pb = b + (ib * n + n - 1) * na + ia;
Chris@10 188 C *pa = a + ib * n * na + ia;
Chris@10 189 c_re(*pb) = c_re(*pa);
Chris@10 190 c_im(*pb) = c_im(*pa);
Chris@10 191 }
Chris@10 192 }
Chris@10 193 }
Chris@10 194
Chris@10 195 void aphase_shift(C *b, C *a, int n, int nb, int na, double sign)
Chris@10 196 {
Chris@10 197 int j, jb, ja;
Chris@10 198 trigreal twopin;
Chris@10 199 twopin = K2PI / n;
Chris@10 200
Chris@10 201 for (jb = 0; jb < nb; ++jb)
Chris@10 202 for (j = 0; j < n; ++j) {
Chris@10 203 trigreal s = sign * SIN(j * twopin);
Chris@10 204 trigreal c = COS(j * twopin);
Chris@10 205
Chris@10 206 for (ja = 0; ja < na; ++ja) {
Chris@10 207 int k = (jb * n + j) * na + ja;
Chris@10 208 c_re(b[k]) = c_re(a[k]) * c - c_im(a[k]) * s;
Chris@10 209 c_im(b[k]) = c_re(a[k]) * s + c_im(a[k]) * c;
Chris@10 210 }
Chris@10 211 }
Chris@10 212 }
Chris@10 213
Chris@10 214 /* A = alpha * A (complex, in place) */
Chris@10 215 void ascale(C *a, C alpha, int n)
Chris@10 216 {
Chris@10 217 int i;
Chris@10 218
Chris@10 219 for (i = 0; i < n; ++i) {
Chris@10 220 R xr = c_re(a[i]), xi = c_im(a[i]);
Chris@10 221 c_re(a[i]) = xr * c_re(alpha) - xi * c_im(alpha);
Chris@10 222 c_im(a[i]) = xr * c_im(alpha) + xi * c_re(alpha);
Chris@10 223 }
Chris@10 224 }
Chris@10 225
Chris@10 226
Chris@10 227 double acmp(C *a, C *b, int n, const char *test, double tol)
Chris@10 228 {
Chris@10 229 double d = aerror(a, b, n);
Chris@10 230 if (d > tol) {
Chris@10 231 ovtpvt_err("Found relative error %e (%s)\n", d, test);
Chris@10 232
Chris@10 233 {
Chris@10 234 int i, N;
Chris@10 235 N = n > 300 && verbose <= 2 ? 300 : n;
Chris@10 236 for (i = 0; i < N; ++i)
Chris@10 237 ovtpvt_err("%8d %16.12f %16.12f %16.12f %16.12f\n", i,
Chris@10 238 (double) c_re(a[i]), (double) c_im(a[i]),
Chris@10 239 (double) c_re(b[i]), (double) c_im(b[i]));
Chris@10 240 }
Chris@10 241
Chris@10 242 bench_exit(EXIT_FAILURE);
Chris@10 243 }
Chris@10 244 return d;
Chris@10 245 }
Chris@10 246
Chris@10 247
Chris@10 248 /*
Chris@10 249 * Implementation of the FFT tester described in
Chris@10 250 *
Chris@10 251 * Funda Ergün. Testing multivariate linear functions: Overcoming the
Chris@10 252 * generator bottleneck. In Proceedings of the Twenty-Seventh Annual
Chris@10 253 * ACM Symposium on the Theory of Computing, pages 407-416, Las Vegas,
Chris@10 254 * Nevada, 29 May--1 June 1995.
Chris@10 255 *
Chris@10 256 * Also: F. Ergun, S. R. Kumar, and D. Sivakumar, "Self-testing without
Chris@10 257 * the generator bottleneck," SIAM J. on Computing 29 (5), 1630-51 (2000).
Chris@10 258 */
Chris@10 259
Chris@10 260 static double impulse0(dofft_closure *k,
Chris@10 261 int n, int vecn,
Chris@10 262 C *inA, C *inB, C *inC,
Chris@10 263 C *outA, C *outB, C *outC,
Chris@10 264 C *tmp, int rounds, double tol)
Chris@10 265 {
Chris@10 266 int N = n * vecn;
Chris@10 267 double e = 0.0;
Chris@10 268 int j;
Chris@10 269
Chris@10 270 k->apply(k, inA, tmp);
Chris@10 271 e = dmax(e, acmp(tmp, outA, N, "impulse 1", tol));
Chris@10 272
Chris@10 273 for (j = 0; j < rounds; ++j) {
Chris@10 274 arand(inB, N);
Chris@10 275 asub(inC, inA, inB, N);
Chris@10 276 k->apply(k, inB, outB);
Chris@10 277 k->apply(k, inC, outC);
Chris@10 278 aadd(tmp, outB, outC, N);
Chris@10 279 e = dmax(e, acmp(tmp, outA, N, "impulse", tol));
Chris@10 280 }
Chris@10 281 return e;
Chris@10 282 }
Chris@10 283
Chris@10 284 double impulse(dofft_closure *k,
Chris@10 285 int n, int vecn,
Chris@10 286 C *inA, C *inB, C *inC,
Chris@10 287 C *outA, C *outB, C *outC,
Chris@10 288 C *tmp, int rounds, double tol)
Chris@10 289 {
Chris@10 290 int i, j;
Chris@10 291 double e = 0.0;
Chris@10 292
Chris@10 293 /* check impulsive input */
Chris@10 294 for (i = 0; i < vecn; ++i) {
Chris@10 295 R x = (sqrt(n)*(i+1)) / (double)(vecn+1);
Chris@10 296 for (j = 0; j < n; ++j) {
Chris@10 297 c_re(inA[j + i * n]) = 0;
Chris@10 298 c_im(inA[j + i * n]) = 0;
Chris@10 299 c_re(outA[j + i * n]) = x;
Chris@10 300 c_im(outA[j + i * n]) = 0;
Chris@10 301 }
Chris@10 302 c_re(inA[i * n]) = x;
Chris@10 303 c_im(inA[i * n]) = 0;
Chris@10 304 }
Chris@10 305
Chris@10 306 e = dmax(e, impulse0(k, n, vecn, inA, inB, inC, outA, outB, outC,
Chris@10 307 tmp, rounds, tol));
Chris@10 308
Chris@10 309 /* check constant input */
Chris@10 310 for (i = 0; i < vecn; ++i) {
Chris@10 311 R x = (i+1) / ((double)(vecn+1) * sqrt(n));
Chris@10 312 for (j = 0; j < n; ++j) {
Chris@10 313 c_re(inA[j + i * n]) = x;
Chris@10 314 c_im(inA[j + i * n]) = 0;
Chris@10 315 c_re(outA[j + i * n]) = 0;
Chris@10 316 c_im(outA[j + i * n]) = 0;
Chris@10 317 }
Chris@10 318 c_re(outA[i * n]) = n * x;
Chris@10 319 c_im(outA[i * n]) = 0;
Chris@10 320 }
Chris@10 321
Chris@10 322 e = dmax(e, impulse0(k, n, vecn, inA, inB, inC, outA, outB, outC,
Chris@10 323 tmp, rounds, tol));
Chris@10 324 return e;
Chris@10 325 }
Chris@10 326
Chris@10 327 double linear(dofft_closure *k, int realp,
Chris@10 328 int n, C *inA, C *inB, C *inC, C *outA,
Chris@10 329 C *outB, C *outC, C *tmp, int rounds, double tol)
Chris@10 330 {
Chris@10 331 int j;
Chris@10 332 double e = 0.0;
Chris@10 333
Chris@10 334 for (j = 0; j < rounds; ++j) {
Chris@10 335 C alpha, beta;
Chris@10 336 c_re(alpha) = mydrand();
Chris@10 337 c_im(alpha) = realp ? 0.0 : mydrand();
Chris@10 338 c_re(beta) = mydrand();
Chris@10 339 c_im(beta) = realp ? 0.0 : mydrand();
Chris@10 340 arand(inA, n);
Chris@10 341 arand(inB, n);
Chris@10 342 k->apply(k, inA, outA);
Chris@10 343 k->apply(k, inB, outB);
Chris@10 344
Chris@10 345 ascale(outA, alpha, n);
Chris@10 346 ascale(outB, beta, n);
Chris@10 347 aadd(tmp, outA, outB, n);
Chris@10 348 ascale(inA, alpha, n);
Chris@10 349 ascale(inB, beta, n);
Chris@10 350 aadd(inC, inA, inB, n);
Chris@10 351 k->apply(k, inC, outC);
Chris@10 352
Chris@10 353 e = dmax(e, acmp(outC, tmp, n, "linear", tol));
Chris@10 354 }
Chris@10 355 return e;
Chris@10 356 }
Chris@10 357
Chris@10 358
Chris@10 359
Chris@10 360 double tf_shift(dofft_closure *k,
Chris@10 361 int realp, const bench_tensor *sz,
Chris@10 362 int n, int vecn, double sign,
Chris@10 363 C *inA, C *inB, C *outA, C *outB, C *tmp,
Chris@10 364 int rounds, double tol, int which_shift)
Chris@10 365 {
Chris@10 366 int nb, na, dim, N = n * vecn;
Chris@10 367 int i, j;
Chris@10 368 double e = 0.0;
Chris@10 369
Chris@10 370 /* test 3: check the time-shift property */
Chris@10 371 /* the paper performs more tests, but this code should be fine too */
Chris@10 372
Chris@10 373 nb = 1;
Chris@10 374 na = n;
Chris@10 375
Chris@10 376 /* check shifts across all SZ dimensions */
Chris@10 377 for (dim = 0; dim < sz->rnk; ++dim) {
Chris@10 378 int ncur = sz->dims[dim].n;
Chris@10 379
Chris@10 380 na /= ncur;
Chris@10 381
Chris@10 382 for (j = 0; j < rounds; ++j) {
Chris@10 383 arand(inA, N);
Chris@10 384
Chris@10 385 if (which_shift == TIME_SHIFT) {
Chris@10 386 for (i = 0; i < vecn; ++i) {
Chris@10 387 if (realp) mkreal(inA + i * n, n);
Chris@10 388 arol(inB + i * n, inA + i * n, ncur, nb, na);
Chris@10 389 }
Chris@10 390 k->apply(k, inA, outA);
Chris@10 391 k->apply(k, inB, outB);
Chris@10 392 for (i = 0; i < vecn; ++i)
Chris@10 393 aphase_shift(tmp + i * n, outB + i * n, ncur,
Chris@10 394 nb, na, sign);
Chris@10 395 e = dmax(e, acmp(tmp, outA, N, "time shift", tol));
Chris@10 396 } else {
Chris@10 397 for (i = 0; i < vecn; ++i) {
Chris@10 398 if (realp)
Chris@10 399 mkhermitian(inA + i * n, sz->rnk, sz->dims, 1);
Chris@10 400 aphase_shift(inB + i * n, inA + i * n, ncur,
Chris@10 401 nb, na, -sign);
Chris@10 402 }
Chris@10 403 k->apply(k, inA, outA);
Chris@10 404 k->apply(k, inB, outB);
Chris@10 405 for (i = 0; i < vecn; ++i)
Chris@10 406 arol(tmp + i * n, outB + i * n, ncur, nb, na);
Chris@10 407 e = dmax(e, acmp(tmp, outA, N, "freq shift", tol));
Chris@10 408 }
Chris@10 409 }
Chris@10 410
Chris@10 411 nb *= ncur;
Chris@10 412 }
Chris@10 413 return e;
Chris@10 414 }
Chris@10 415
Chris@10 416
Chris@10 417 void preserves_input(dofft_closure *k, aconstrain constrain,
Chris@10 418 int n, C *inA, C *inB, C *outB, int rounds)
Chris@10 419 {
Chris@10 420 int j;
Chris@10 421 int recopy_input = k->recopy_input;
Chris@10 422
Chris@10 423 k->recopy_input = 1;
Chris@10 424 for (j = 0; j < rounds; ++j) {
Chris@10 425 arand(inA, n);
Chris@10 426 if (constrain)
Chris@10 427 constrain(inA, n);
Chris@10 428
Chris@10 429 acopy(inB, inA, n);
Chris@10 430 k->apply(k, inB, outB);
Chris@10 431 acmp(inB, inA, n, "preserves_input", 0.0);
Chris@10 432 }
Chris@10 433 k->recopy_input = recopy_input;
Chris@10 434 }
Chris@10 435
Chris@10 436
Chris@10 437 /* Make a copy of the size tensor, with the same dimensions, but with
Chris@10 438 the strides corresponding to a "packed" row-major array with the
Chris@10 439 given stride. */
Chris@10 440 bench_tensor *verify_pack(const bench_tensor *sz, int s)
Chris@10 441 {
Chris@10 442 bench_tensor *x = tensor_copy(sz);
Chris@10 443 if (FINITE_RNK(x->rnk) && x->rnk > 0) {
Chris@10 444 int i;
Chris@10 445 x->dims[x->rnk - 1].is = s;
Chris@10 446 x->dims[x->rnk - 1].os = s;
Chris@10 447 for (i = x->rnk - 1; i > 0; --i) {
Chris@10 448 x->dims[i - 1].is = x->dims[i].is * x->dims[i].n;
Chris@10 449 x->dims[i - 1].os = x->dims[i].os * x->dims[i].n;
Chris@10 450 }
Chris@10 451 }
Chris@10 452 return x;
Chris@10 453 }
Chris@10 454
Chris@10 455 static int all_zero(C *a, int n)
Chris@10 456 {
Chris@10 457 int i;
Chris@10 458 for (i = 0; i < n; ++i)
Chris@10 459 if (c_re(a[i]) != 0.0 || c_im(a[i]) != 0.0)
Chris@10 460 return 0;
Chris@10 461 return 1;
Chris@10 462 }
Chris@10 463
Chris@10 464 static int one_accuracy_test(dofft_closure *k, aconstrain constrain,
Chris@10 465 int sign, int n, C *a, C *b,
Chris@10 466 double t[6])
Chris@10 467 {
Chris@10 468 double err[6];
Chris@10 469
Chris@10 470 if (constrain)
Chris@10 471 constrain(a, n);
Chris@10 472
Chris@10 473 if (all_zero(a, n))
Chris@10 474 return 0;
Chris@10 475
Chris@10 476 k->apply(k, a, b);
Chris@10 477 fftaccuracy(n, a, b, sign, err);
Chris@10 478
Chris@10 479 t[0] += err[0];
Chris@10 480 t[1] += err[1] * err[1];
Chris@10 481 t[2] = dmax(t[2], err[2]);
Chris@10 482 t[3] += err[3];
Chris@10 483 t[4] += err[4] * err[4];
Chris@10 484 t[5] = dmax(t[5], err[5]);
Chris@10 485
Chris@10 486 return 1;
Chris@10 487 }
Chris@10 488
Chris@10 489 void accuracy_test(dofft_closure *k, aconstrain constrain,
Chris@10 490 int sign, int n, C *a, C *b, int rounds, int impulse_rounds,
Chris@10 491 double t[6])
Chris@10 492 {
Chris@10 493 int r, i;
Chris@10 494 int ntests = 0;
Chris@10 495 bench_complex czero = {0, 0};
Chris@10 496
Chris@10 497 for (i = 0; i < 6; ++i) t[i] = 0.0;
Chris@10 498
Chris@10 499 for (r = 0; r < rounds; ++r) {
Chris@10 500 arand(a, n);
Chris@10 501 if (one_accuracy_test(k, constrain, sign, n, a, b, t))
Chris@10 502 ++ntests;
Chris@10 503 }
Chris@10 504
Chris@10 505 /* impulses at beginning of array */
Chris@10 506 for (r = 0; r < impulse_rounds; ++r) {
Chris@10 507 if (r > n - r - 1)
Chris@10 508 continue;
Chris@10 509
Chris@10 510 caset(a, n, czero);
Chris@10 511 c_re(a[r]) = c_im(a[r]) = 1.0;
Chris@10 512
Chris@10 513 if (one_accuracy_test(k, constrain, sign, n, a, b, t))
Chris@10 514 ++ntests;
Chris@10 515 }
Chris@10 516
Chris@10 517 /* impulses at end of array */
Chris@10 518 for (r = 0; r < impulse_rounds; ++r) {
Chris@10 519 if (r <= n - r - 1)
Chris@10 520 continue;
Chris@10 521
Chris@10 522 caset(a, n, czero);
Chris@10 523 c_re(a[n - r - 1]) = c_im(a[n - r - 1]) = 1.0;
Chris@10 524
Chris@10 525 if (one_accuracy_test(k, constrain, sign, n, a, b, t))
Chris@10 526 ++ntests;
Chris@10 527 }
Chris@10 528
Chris@10 529 /* randomly-located impulses */
Chris@10 530 for (r = 0; r < impulse_rounds; ++r) {
Chris@10 531 caset(a, n, czero);
Chris@10 532 i = rand() % n;
Chris@10 533 c_re(a[i]) = c_im(a[i]) = 1.0;
Chris@10 534
Chris@10 535 if (one_accuracy_test(k, constrain, sign, n, a, b, t))
Chris@10 536 ++ntests;
Chris@10 537 }
Chris@10 538
Chris@10 539 t[0] /= ntests;
Chris@10 540 t[1] = sqrt(t[1] / ntests);
Chris@10 541 t[3] /= ntests;
Chris@10 542 t[4] = sqrt(t[4] / ntests);
Chris@10 543
Chris@10 544 fftaccuracy_done();
Chris@10 545 }