annotate src/fftw-3.3.3/genfft/conv.ml @ 36:55ece8862b6d

Merge
author Chris Cannam
date Wed, 11 Mar 2015 13:32:44 +0000
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 (*
Chris@10 2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
Chris@10 3 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 4 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 5 *
Chris@10 6 * This program is free software; you can redistribute it and/or modify
Chris@10 7 * it under the terms of the GNU General Public License as published by
Chris@10 8 * the Free Software Foundation; either version 2 of the License, or
Chris@10 9 * (at your option) any later version.
Chris@10 10 *
Chris@10 11 * This program is distributed in the hope that it will be useful,
Chris@10 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 14 * GNU General Public License for more details.
Chris@10 15 *
Chris@10 16 * You should have received a copy of the GNU General Public License
Chris@10 17 * along with this program; if not, write to the Free Software
Chris@10 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 19 *
Chris@10 20 *)
Chris@10 21
Chris@10 22 open Complex
Chris@10 23 open Util
Chris@10 24
Chris@10 25 let polyphase m a ph i = a (m * i + ph)
Chris@10 26
Chris@10 27 let rec divmod n i =
Chris@10 28 if (i < 0) then
Chris@10 29 let (a, b) = divmod n (i + n)
Chris@10 30 in (a - 1, b)
Chris@10 31 else (i / n, i mod n)
Chris@10 32
Chris@10 33 let unpolyphase m a i = let (x, y) = divmod m i in a y x
Chris@10 34
Chris@10 35 let lift2 f a b i = f (a i) (b i)
Chris@10 36
Chris@10 37 (* convolution of signals A and B *)
Chris@10 38 let rec conv na a nb b =
Chris@10 39 let rec naive na a nb b i =
Chris@10 40 sigma 0 na (fun j -> (a j) @* (b (i - j)))
Chris@10 41
Chris@10 42 and recur na a nb b =
Chris@10 43 if (na <= 1 || nb <= 1) then
Chris@10 44 naive na a nb b
Chris@10 45 else
Chris@10 46 let p = polyphase 2 in
Chris@10 47 let ee = conv (na - na / 2) (p a 0) (nb - nb / 2) (p b 0)
Chris@10 48 and eo = conv (na - na / 2) (p a 0) (nb / 2) (p b 1)
Chris@10 49 and oe = conv (na / 2) (p a 1) (nb - nb / 2) (p b 0)
Chris@10 50 and oo = conv (na / 2) (p a 1) (nb / 2) (p b 1) in
Chris@10 51 unpolyphase 2 (function
Chris@10 52 0 -> fun i -> (ee i) @+ (oo (i - 1))
Chris@10 53 | 1 -> fun i -> (eo i) @+ (oe i)
Chris@10 54 | _ -> failwith "recur")
Chris@10 55
Chris@10 56
Chris@10 57 (* Karatsuba variant 1: (a+bx)(c+dx) = (ac+bdxx)+((a+b)(c+d)-ac-bd)x *)
Chris@10 58 and karatsuba1 na a nb b =
Chris@10 59 let p = polyphase 2 in
Chris@10 60 let ae = p a 0 and nae = na - na / 2
Chris@10 61 and ao = p a 1 and nao = na / 2
Chris@10 62 and be = p b 0 and nbe = nb - nb / 2
Chris@10 63 and bo = p b 1 and nbo = nb / 2 in
Chris@10 64 let ae = infinite nae ae and ao = infinite nao ao
Chris@10 65 and be = infinite nbe be and bo = infinite nbo bo in
Chris@10 66 let aeo = lift2 (@+) ae ao and naeo = nae
Chris@10 67 and beo = lift2 (@+) be bo and nbeo = nbe in
Chris@10 68 let ee = conv nae ae nbe be
Chris@10 69 and oo = conv nao ao nbo bo
Chris@10 70 and eoeo = conv naeo aeo nbeo beo in
Chris@10 71
Chris@10 72 let q = function
Chris@10 73 0 -> fun i -> (ee i) @+ (oo (i - 1))
Chris@10 74 | 1 -> fun i -> (eoeo i) @- ((ee i) @+ (oo i))
Chris@10 75 | _ -> failwith "karatsuba1" in
Chris@10 76 unpolyphase 2 q
Chris@10 77
Chris@10 78 (* Karatsuba variant 2:
Chris@10 79 (a+bx)(c+dx) = ((a+b)c-b(c-dxx))+x((a+b)c-a(c-d)) *)
Chris@10 80 and karatsuba2 na a nb b =
Chris@10 81 let p = polyphase 2 in
Chris@10 82 let ae = p a 0 and nae = na - na / 2
Chris@10 83 and ao = p a 1 and nao = na / 2
Chris@10 84 and be = p b 0 and nbe = nb - nb / 2
Chris@10 85 and bo = p b 1 and nbo = nb / 2 in
Chris@10 86 let ae = infinite nae ae and ao = infinite nao ao
Chris@10 87 and be = infinite nbe be and bo = infinite nbo bo in
Chris@10 88
Chris@10 89 let c1 = conv nae (lift2 (@+) ae ao) nbe be
Chris@10 90 and c2 = conv nao ao (nbo + 1) (fun i -> be i @- bo (i - 1))
Chris@10 91 and c3 = conv nae ae nbe (lift2 (@-) be bo) in
Chris@10 92
Chris@10 93 let q = function
Chris@10 94 0 -> lift2 (@-) c1 c2
Chris@10 95 | 1 -> lift2 (@-) c1 c3
Chris@10 96 | _ -> failwith "karatsuba2" in
Chris@10 97 unpolyphase 2 q
Chris@10 98
Chris@10 99 and karatsuba na a nb b =
Chris@10 100 let m = na + nb - 1 in
Chris@10 101 if (m < !Magic.karatsuba_min) then
Chris@10 102 recur na a nb b
Chris@10 103 else
Chris@10 104 match !Magic.karatsuba_variant with
Chris@10 105 1 -> karatsuba1 na a nb b
Chris@10 106 | 2 -> karatsuba2 na a nb b
Chris@10 107 | _ -> failwith "unknown karatsuba variant"
Chris@10 108
Chris@10 109 and via_circular na a nb b =
Chris@10 110 let m = na + nb - 1 in
Chris@10 111 if (m < !Magic.circular_min) then
Chris@10 112 karatsuba na a nb b
Chris@10 113 else
Chris@10 114 let rec find_min n = if n >= m then n else find_min (2 * n) in
Chris@10 115 circular (find_min 1) a b
Chris@10 116
Chris@10 117 in
Chris@10 118 let a = infinite na a and b = infinite nb b in
Chris@10 119 let res = array (na + nb - 1) (via_circular na a nb b) in
Chris@10 120 infinite (na + nb - 1) res
Chris@10 121
Chris@10 122 and circular n a b =
Chris@10 123 let via_dft n a b =
Chris@10 124 let fa = Fft.dft (-1) n a
Chris@10 125 and fb = Fft.dft (-1) n b
Chris@10 126 and scale = inverse_int n in
Chris@10 127 let fab i = ((fa i) @* (fb i)) @* scale in
Chris@10 128 Fft.dft 1 n fab
Chris@10 129
Chris@10 130 in via_dft n a b