annotate src/zlib-1.2.8/contrib/infback9/inftree9.c @ 155:54abead6ecce

Opus for Windows (MSVC)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 25 Jan 2019 12:15:58 +0000
parents 5b4145a0d408
children
rev   line source
cannam@128 1 /* inftree9.c -- generate Huffman trees for efficient decoding
cannam@128 2 * Copyright (C) 1995-2013 Mark Adler
cannam@128 3 * For conditions of distribution and use, see copyright notice in zlib.h
cannam@128 4 */
cannam@128 5
cannam@128 6 #include "zutil.h"
cannam@128 7 #include "inftree9.h"
cannam@128 8
cannam@128 9 #define MAXBITS 15
cannam@128 10
cannam@128 11 const char inflate9_copyright[] =
cannam@128 12 " inflate9 1.2.8 Copyright 1995-2013 Mark Adler ";
cannam@128 13 /*
cannam@128 14 If you use the zlib library in a product, an acknowledgment is welcome
cannam@128 15 in the documentation of your product. If for some reason you cannot
cannam@128 16 include such an acknowledgment, I would appreciate that you keep this
cannam@128 17 copyright string in the executable of your product.
cannam@128 18 */
cannam@128 19
cannam@128 20 /*
cannam@128 21 Build a set of tables to decode the provided canonical Huffman code.
cannam@128 22 The code lengths are lens[0..codes-1]. The result starts at *table,
cannam@128 23 whose indices are 0..2^bits-1. work is a writable array of at least
cannam@128 24 lens shorts, which is used as a work area. type is the type of code
cannam@128 25 to be generated, CODES, LENS, or DISTS. On return, zero is success,
cannam@128 26 -1 is an invalid code, and +1 means that ENOUGH isn't enough. table
cannam@128 27 on return points to the next available entry's address. bits is the
cannam@128 28 requested root table index bits, and on return it is the actual root
cannam@128 29 table index bits. It will differ if the request is greater than the
cannam@128 30 longest code or if it is less than the shortest code.
cannam@128 31 */
cannam@128 32 int inflate_table9(type, lens, codes, table, bits, work)
cannam@128 33 codetype type;
cannam@128 34 unsigned short FAR *lens;
cannam@128 35 unsigned codes;
cannam@128 36 code FAR * FAR *table;
cannam@128 37 unsigned FAR *bits;
cannam@128 38 unsigned short FAR *work;
cannam@128 39 {
cannam@128 40 unsigned len; /* a code's length in bits */
cannam@128 41 unsigned sym; /* index of code symbols */
cannam@128 42 unsigned min, max; /* minimum and maximum code lengths */
cannam@128 43 unsigned root; /* number of index bits for root table */
cannam@128 44 unsigned curr; /* number of index bits for current table */
cannam@128 45 unsigned drop; /* code bits to drop for sub-table */
cannam@128 46 int left; /* number of prefix codes available */
cannam@128 47 unsigned used; /* code entries in table used */
cannam@128 48 unsigned huff; /* Huffman code */
cannam@128 49 unsigned incr; /* for incrementing code, index */
cannam@128 50 unsigned fill; /* index for replicating entries */
cannam@128 51 unsigned low; /* low bits for current root entry */
cannam@128 52 unsigned mask; /* mask for low root bits */
cannam@128 53 code this; /* table entry for duplication */
cannam@128 54 code FAR *next; /* next available space in table */
cannam@128 55 const unsigned short FAR *base; /* base value table to use */
cannam@128 56 const unsigned short FAR *extra; /* extra bits table to use */
cannam@128 57 int end; /* use base and extra for symbol > end */
cannam@128 58 unsigned short count[MAXBITS+1]; /* number of codes of each length */
cannam@128 59 unsigned short offs[MAXBITS+1]; /* offsets in table for each length */
cannam@128 60 static const unsigned short lbase[31] = { /* Length codes 257..285 base */
cannam@128 61 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17,
cannam@128 62 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115,
cannam@128 63 131, 163, 195, 227, 3, 0, 0};
cannam@128 64 static const unsigned short lext[31] = { /* Length codes 257..285 extra */
cannam@128 65 128, 128, 128, 128, 128, 128, 128, 128, 129, 129, 129, 129,
cannam@128 66 130, 130, 130, 130, 131, 131, 131, 131, 132, 132, 132, 132,
cannam@128 67 133, 133, 133, 133, 144, 72, 78};
cannam@128 68 static const unsigned short dbase[32] = { /* Distance codes 0..31 base */
cannam@128 69 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49,
cannam@128 70 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073,
cannam@128 71 4097, 6145, 8193, 12289, 16385, 24577, 32769, 49153};
cannam@128 72 static const unsigned short dext[32] = { /* Distance codes 0..31 extra */
cannam@128 73 128, 128, 128, 128, 129, 129, 130, 130, 131, 131, 132, 132,
cannam@128 74 133, 133, 134, 134, 135, 135, 136, 136, 137, 137, 138, 138,
cannam@128 75 139, 139, 140, 140, 141, 141, 142, 142};
cannam@128 76
cannam@128 77 /*
cannam@128 78 Process a set of code lengths to create a canonical Huffman code. The
cannam@128 79 code lengths are lens[0..codes-1]. Each length corresponds to the
cannam@128 80 symbols 0..codes-1. The Huffman code is generated by first sorting the
cannam@128 81 symbols by length from short to long, and retaining the symbol order
cannam@128 82 for codes with equal lengths. Then the code starts with all zero bits
cannam@128 83 for the first code of the shortest length, and the codes are integer
cannam@128 84 increments for the same length, and zeros are appended as the length
cannam@128 85 increases. For the deflate format, these bits are stored backwards
cannam@128 86 from their more natural integer increment ordering, and so when the
cannam@128 87 decoding tables are built in the large loop below, the integer codes
cannam@128 88 are incremented backwards.
cannam@128 89
cannam@128 90 This routine assumes, but does not check, that all of the entries in
cannam@128 91 lens[] are in the range 0..MAXBITS. The caller must assure this.
cannam@128 92 1..MAXBITS is interpreted as that code length. zero means that that
cannam@128 93 symbol does not occur in this code.
cannam@128 94
cannam@128 95 The codes are sorted by computing a count of codes for each length,
cannam@128 96 creating from that a table of starting indices for each length in the
cannam@128 97 sorted table, and then entering the symbols in order in the sorted
cannam@128 98 table. The sorted table is work[], with that space being provided by
cannam@128 99 the caller.
cannam@128 100
cannam@128 101 The length counts are used for other purposes as well, i.e. finding
cannam@128 102 the minimum and maximum length codes, determining if there are any
cannam@128 103 codes at all, checking for a valid set of lengths, and looking ahead
cannam@128 104 at length counts to determine sub-table sizes when building the
cannam@128 105 decoding tables.
cannam@128 106 */
cannam@128 107
cannam@128 108 /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
cannam@128 109 for (len = 0; len <= MAXBITS; len++)
cannam@128 110 count[len] = 0;
cannam@128 111 for (sym = 0; sym < codes; sym++)
cannam@128 112 count[lens[sym]]++;
cannam@128 113
cannam@128 114 /* bound code lengths, force root to be within code lengths */
cannam@128 115 root = *bits;
cannam@128 116 for (max = MAXBITS; max >= 1; max--)
cannam@128 117 if (count[max] != 0) break;
cannam@128 118 if (root > max) root = max;
cannam@128 119 if (max == 0) return -1; /* no codes! */
cannam@128 120 for (min = 1; min <= MAXBITS; min++)
cannam@128 121 if (count[min] != 0) break;
cannam@128 122 if (root < min) root = min;
cannam@128 123
cannam@128 124 /* check for an over-subscribed or incomplete set of lengths */
cannam@128 125 left = 1;
cannam@128 126 for (len = 1; len <= MAXBITS; len++) {
cannam@128 127 left <<= 1;
cannam@128 128 left -= count[len];
cannam@128 129 if (left < 0) return -1; /* over-subscribed */
cannam@128 130 }
cannam@128 131 if (left > 0 && (type == CODES || max != 1))
cannam@128 132 return -1; /* incomplete set */
cannam@128 133
cannam@128 134 /* generate offsets into symbol table for each length for sorting */
cannam@128 135 offs[1] = 0;
cannam@128 136 for (len = 1; len < MAXBITS; len++)
cannam@128 137 offs[len + 1] = offs[len] + count[len];
cannam@128 138
cannam@128 139 /* sort symbols by length, by symbol order within each length */
cannam@128 140 for (sym = 0; sym < codes; sym++)
cannam@128 141 if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;
cannam@128 142
cannam@128 143 /*
cannam@128 144 Create and fill in decoding tables. In this loop, the table being
cannam@128 145 filled is at next and has curr index bits. The code being used is huff
cannam@128 146 with length len. That code is converted to an index by dropping drop
cannam@128 147 bits off of the bottom. For codes where len is less than drop + curr,
cannam@128 148 those top drop + curr - len bits are incremented through all values to
cannam@128 149 fill the table with replicated entries.
cannam@128 150
cannam@128 151 root is the number of index bits for the root table. When len exceeds
cannam@128 152 root, sub-tables are created pointed to by the root entry with an index
cannam@128 153 of the low root bits of huff. This is saved in low to check for when a
cannam@128 154 new sub-table should be started. drop is zero when the root table is
cannam@128 155 being filled, and drop is root when sub-tables are being filled.
cannam@128 156
cannam@128 157 When a new sub-table is needed, it is necessary to look ahead in the
cannam@128 158 code lengths to determine what size sub-table is needed. The length
cannam@128 159 counts are used for this, and so count[] is decremented as codes are
cannam@128 160 entered in the tables.
cannam@128 161
cannam@128 162 used keeps track of how many table entries have been allocated from the
cannam@128 163 provided *table space. It is checked for LENS and DIST tables against
cannam@128 164 the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
cannam@128 165 the initial root table size constants. See the comments in inftree9.h
cannam@128 166 for more information.
cannam@128 167
cannam@128 168 sym increments through all symbols, and the loop terminates when
cannam@128 169 all codes of length max, i.e. all codes, have been processed. This
cannam@128 170 routine permits incomplete codes, so another loop after this one fills
cannam@128 171 in the rest of the decoding tables with invalid code markers.
cannam@128 172 */
cannam@128 173
cannam@128 174 /* set up for code type */
cannam@128 175 switch (type) {
cannam@128 176 case CODES:
cannam@128 177 base = extra = work; /* dummy value--not used */
cannam@128 178 end = 19;
cannam@128 179 break;
cannam@128 180 case LENS:
cannam@128 181 base = lbase;
cannam@128 182 base -= 257;
cannam@128 183 extra = lext;
cannam@128 184 extra -= 257;
cannam@128 185 end = 256;
cannam@128 186 break;
cannam@128 187 default: /* DISTS */
cannam@128 188 base = dbase;
cannam@128 189 extra = dext;
cannam@128 190 end = -1;
cannam@128 191 }
cannam@128 192
cannam@128 193 /* initialize state for loop */
cannam@128 194 huff = 0; /* starting code */
cannam@128 195 sym = 0; /* starting code symbol */
cannam@128 196 len = min; /* starting code length */
cannam@128 197 next = *table; /* current table to fill in */
cannam@128 198 curr = root; /* current table index bits */
cannam@128 199 drop = 0; /* current bits to drop from code for index */
cannam@128 200 low = (unsigned)(-1); /* trigger new sub-table when len > root */
cannam@128 201 used = 1U << root; /* use root table entries */
cannam@128 202 mask = used - 1; /* mask for comparing low */
cannam@128 203
cannam@128 204 /* check available table space */
cannam@128 205 if ((type == LENS && used >= ENOUGH_LENS) ||
cannam@128 206 (type == DISTS && used >= ENOUGH_DISTS))
cannam@128 207 return 1;
cannam@128 208
cannam@128 209 /* process all codes and make table entries */
cannam@128 210 for (;;) {
cannam@128 211 /* create table entry */
cannam@128 212 this.bits = (unsigned char)(len - drop);
cannam@128 213 if ((int)(work[sym]) < end) {
cannam@128 214 this.op = (unsigned char)0;
cannam@128 215 this.val = work[sym];
cannam@128 216 }
cannam@128 217 else if ((int)(work[sym]) > end) {
cannam@128 218 this.op = (unsigned char)(extra[work[sym]]);
cannam@128 219 this.val = base[work[sym]];
cannam@128 220 }
cannam@128 221 else {
cannam@128 222 this.op = (unsigned char)(32 + 64); /* end of block */
cannam@128 223 this.val = 0;
cannam@128 224 }
cannam@128 225
cannam@128 226 /* replicate for those indices with low len bits equal to huff */
cannam@128 227 incr = 1U << (len - drop);
cannam@128 228 fill = 1U << curr;
cannam@128 229 do {
cannam@128 230 fill -= incr;
cannam@128 231 next[(huff >> drop) + fill] = this;
cannam@128 232 } while (fill != 0);
cannam@128 233
cannam@128 234 /* backwards increment the len-bit code huff */
cannam@128 235 incr = 1U << (len - 1);
cannam@128 236 while (huff & incr)
cannam@128 237 incr >>= 1;
cannam@128 238 if (incr != 0) {
cannam@128 239 huff &= incr - 1;
cannam@128 240 huff += incr;
cannam@128 241 }
cannam@128 242 else
cannam@128 243 huff = 0;
cannam@128 244
cannam@128 245 /* go to next symbol, update count, len */
cannam@128 246 sym++;
cannam@128 247 if (--(count[len]) == 0) {
cannam@128 248 if (len == max) break;
cannam@128 249 len = lens[work[sym]];
cannam@128 250 }
cannam@128 251
cannam@128 252 /* create new sub-table if needed */
cannam@128 253 if (len > root && (huff & mask) != low) {
cannam@128 254 /* if first time, transition to sub-tables */
cannam@128 255 if (drop == 0)
cannam@128 256 drop = root;
cannam@128 257
cannam@128 258 /* increment past last table */
cannam@128 259 next += 1U << curr;
cannam@128 260
cannam@128 261 /* determine length of next table */
cannam@128 262 curr = len - drop;
cannam@128 263 left = (int)(1 << curr);
cannam@128 264 while (curr + drop < max) {
cannam@128 265 left -= count[curr + drop];
cannam@128 266 if (left <= 0) break;
cannam@128 267 curr++;
cannam@128 268 left <<= 1;
cannam@128 269 }
cannam@128 270
cannam@128 271 /* check for enough space */
cannam@128 272 used += 1U << curr;
cannam@128 273 if ((type == LENS && used >= ENOUGH_LENS) ||
cannam@128 274 (type == DISTS && used >= ENOUGH_DISTS))
cannam@128 275 return 1;
cannam@128 276
cannam@128 277 /* point entry in root table to sub-table */
cannam@128 278 low = huff & mask;
cannam@128 279 (*table)[low].op = (unsigned char)curr;
cannam@128 280 (*table)[low].bits = (unsigned char)root;
cannam@128 281 (*table)[low].val = (unsigned short)(next - *table);
cannam@128 282 }
cannam@128 283 }
cannam@128 284
cannam@128 285 /*
cannam@128 286 Fill in rest of table for incomplete codes. This loop is similar to the
cannam@128 287 loop above in incrementing huff for table indices. It is assumed that
cannam@128 288 len is equal to curr + drop, so there is no loop needed to increment
cannam@128 289 through high index bits. When the current sub-table is filled, the loop
cannam@128 290 drops back to the root table to fill in any remaining entries there.
cannam@128 291 */
cannam@128 292 this.op = (unsigned char)64; /* invalid code marker */
cannam@128 293 this.bits = (unsigned char)(len - drop);
cannam@128 294 this.val = (unsigned short)0;
cannam@128 295 while (huff != 0) {
cannam@128 296 /* when done with sub-table, drop back to root table */
cannam@128 297 if (drop != 0 && (huff & mask) != low) {
cannam@128 298 drop = 0;
cannam@128 299 len = root;
cannam@128 300 next = *table;
cannam@128 301 curr = root;
cannam@128 302 this.bits = (unsigned char)len;
cannam@128 303 }
cannam@128 304
cannam@128 305 /* put invalid code marker in table */
cannam@128 306 next[huff >> drop] = this;
cannam@128 307
cannam@128 308 /* backwards increment the len-bit code huff */
cannam@128 309 incr = 1U << (len - 1);
cannam@128 310 while (huff & incr)
cannam@128 311 incr >>= 1;
cannam@128 312 if (incr != 0) {
cannam@128 313 huff &= incr - 1;
cannam@128 314 huff += incr;
cannam@128 315 }
cannam@128 316 else
cannam@128 317 huff = 0;
cannam@128 318 }
cannam@128 319
cannam@128 320 /* set return parameters */
cannam@128 321 *table += used;
cannam@128 322 *bits = root;
cannam@128 323 return 0;
cannam@128 324 }