annotate src/fftw-3.3.3/dft/simd/common/t3bv_16.c @ 110:4c576e416934

Add Vamp SDK, move serd/sord to more obvious locations
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 04 Jul 2014 08:16:02 +0100
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@95 22 /* Generated on Sun Nov 25 07:39:18 EST 2012 */
cannam@95 23
cannam@95 24 #include "codelet-dft.h"
cannam@95 25
cannam@95 26 #ifdef HAVE_FMA
cannam@95 27
cannam@95 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3bv_16 -include t3b.h -sign 1 */
cannam@95 29
cannam@95 30 /*
cannam@95 31 * This function contains 98 FP additions, 86 FP multiplications,
cannam@95 32 * (or, 64 additions, 52 multiplications, 34 fused multiply/add),
cannam@95 33 * 70 stack variables, 3 constants, and 32 memory accesses
cannam@95 34 */
cannam@95 35 #include "t3b.h"
cannam@95 36
cannam@95 37 static void t3bv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 38 {
cannam@95 39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
cannam@95 40 DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
cannam@95 41 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@95 42 {
cannam@95 43 INT m;
cannam@95 44 R *x;
cannam@95 45 x = ii;
cannam@95 46 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) {
cannam@95 47 V T13, Tg, TY, T14, T1A, T1q, T1f, T1x, T1r, T1i, Tt, T16, TB, T1j, T1k;
cannam@95 48 V TH;
cannam@95 49 {
cannam@95 50 V T2, T8, Tu, T3;
cannam@95 51 T2 = LDW(&(W[0]));
cannam@95 52 T8 = LDW(&(W[TWVL * 2]));
cannam@95 53 Tu = LDW(&(W[TWVL * 6]));
cannam@95 54 T3 = LDW(&(W[TWVL * 4]));
cannam@95 55 {
cannam@95 56 V Ty, T1o, Tf, T1b, T7, Tr, TQ, TX, T1g, Tl, To, Tw, TG, Tz, T1p;
cannam@95 57 V T1e, TC;
cannam@95 58 {
cannam@95 59 V T1, T5, Ta, Td;
cannam@95 60 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@95 61 T5 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@95 62 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@95 63 Td = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
cannam@95 64 {
cannam@95 65 V TR, TN, TM, TE, Tb, Tp, Tm, Te, T6, TW, TO, TS;
cannam@95 66 {
cannam@95 67 V TL, Tx, T9, TU, Tc, T4, TV;
cannam@95 68 TL = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@95 69 Tx = VZMULJ(T2, T8);
cannam@95 70 T9 = VZMUL(T2, T8);
cannam@95 71 TR = VZMULJ(T2, Tu);
cannam@95 72 TU = VZMULJ(T8, T3);
cannam@95 73 Tc = VZMUL(T8, T3);
cannam@95 74 T4 = VZMULJ(T2, T3);
cannam@95 75 TN = VZMUL(T2, T3);
cannam@95 76 TV = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@95 77 TM = VZMUL(Tx, TL);
cannam@95 78 Ty = VZMULJ(Tx, T3);
cannam@95 79 TE = VZMUL(Tx, T3);
cannam@95 80 Tb = VZMUL(T9, Ta);
cannam@95 81 Tp = VZMUL(T9, T3);
cannam@95 82 Tm = VZMULJ(T9, T3);
cannam@95 83 Te = VZMUL(Tc, Td);
cannam@95 84 T6 = VZMUL(T4, T5);
cannam@95 85 TW = VZMUL(TU, TV);
cannam@95 86 }
cannam@95 87 TO = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@95 88 TS = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
cannam@95 89 {
cannam@95 90 V TP, TT, Ti, Tk, Tn, Th, Tq, Tj;
cannam@95 91 Th = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@95 92 Tq = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
cannam@95 93 Tj = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@95 94 T1o = VSUB(Tb, Te);
cannam@95 95 Tf = VADD(Tb, Te);
cannam@95 96 T1b = VSUB(T1, T6);
cannam@95 97 T7 = VADD(T1, T6);
cannam@95 98 TP = VZMUL(TN, TO);
cannam@95 99 TT = VZMUL(TR, TS);
cannam@95 100 Ti = VZMUL(T2, Th);
cannam@95 101 Tr = VZMUL(Tp, Tq);
cannam@95 102 Tk = VZMUL(T3, Tj);
cannam@95 103 Tn = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@95 104 {
cannam@95 105 V T1c, T1d, Tv, TF;
cannam@95 106 Tv = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
cannam@95 107 TF = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@95 108 T1c = VSUB(TM, TP);
cannam@95 109 TQ = VADD(TM, TP);
cannam@95 110 T1d = VSUB(TT, TW);
cannam@95 111 TX = VADD(TT, TW);
cannam@95 112 T1g = VSUB(Ti, Tk);
cannam@95 113 Tl = VADD(Ti, Tk);
cannam@95 114 To = VZMUL(Tm, Tn);
cannam@95 115 Tw = VZMUL(Tu, Tv);
cannam@95 116 TG = VZMUL(TE, TF);
cannam@95 117 Tz = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@95 118 T1p = VSUB(T1c, T1d);
cannam@95 119 T1e = VADD(T1c, T1d);
cannam@95 120 TC = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@95 121 }
cannam@95 122 }
cannam@95 123 }
cannam@95 124 }
cannam@95 125 {
cannam@95 126 V T1h, Ts, TA, TD;
cannam@95 127 T13 = VADD(T7, Tf);
cannam@95 128 Tg = VSUB(T7, Tf);
cannam@95 129 T1h = VSUB(To, Tr);
cannam@95 130 Ts = VADD(To, Tr);
cannam@95 131 TY = VSUB(TQ, TX);
cannam@95 132 T14 = VADD(TQ, TX);
cannam@95 133 TA = VZMUL(Ty, Tz);
cannam@95 134 T1A = VFNMS(LDK(KP707106781), T1p, T1o);
cannam@95 135 T1q = VFMA(LDK(KP707106781), T1p, T1o);
cannam@95 136 T1f = VFMA(LDK(KP707106781), T1e, T1b);
cannam@95 137 T1x = VFNMS(LDK(KP707106781), T1e, T1b);
cannam@95 138 TD = VZMUL(T8, TC);
cannam@95 139 T1r = VFMA(LDK(KP414213562), T1g, T1h);
cannam@95 140 T1i = VFNMS(LDK(KP414213562), T1h, T1g);
cannam@95 141 Tt = VSUB(Tl, Ts);
cannam@95 142 T16 = VADD(Tl, Ts);
cannam@95 143 TB = VADD(Tw, TA);
cannam@95 144 T1j = VSUB(Tw, TA);
cannam@95 145 T1k = VSUB(TG, TD);
cannam@95 146 TH = VADD(TD, TG);
cannam@95 147 }
cannam@95 148 }
cannam@95 149 }
cannam@95 150 {
cannam@95 151 V T15, T19, T1l, T1s, TI, T17;
cannam@95 152 T15 = VSUB(T13, T14);
cannam@95 153 T19 = VADD(T13, T14);
cannam@95 154 T1l = VFNMS(LDK(KP414213562), T1k, T1j);
cannam@95 155 T1s = VFMA(LDK(KP414213562), T1j, T1k);
cannam@95 156 TI = VSUB(TB, TH);
cannam@95 157 T17 = VADD(TB, TH);
cannam@95 158 {
cannam@95 159 V T1y, T1t, T1B, T1m;
cannam@95 160 T1y = VADD(T1r, T1s);
cannam@95 161 T1t = VSUB(T1r, T1s);
cannam@95 162 T1B = VSUB(T1i, T1l);
cannam@95 163 T1m = VADD(T1i, T1l);
cannam@95 164 {
cannam@95 165 V T18, T1a, TJ, TZ;
cannam@95 166 T18 = VSUB(T16, T17);
cannam@95 167 T1a = VADD(T16, T17);
cannam@95 168 TJ = VADD(Tt, TI);
cannam@95 169 TZ = VSUB(Tt, TI);
cannam@95 170 {
cannam@95 171 V T1u, T1w, T1z, T1D;
cannam@95 172 T1u = VFNMS(LDK(KP923879532), T1t, T1q);
cannam@95 173 T1w = VFMA(LDK(KP923879532), T1t, T1q);
cannam@95 174 T1z = VFNMS(LDK(KP923879532), T1y, T1x);
cannam@95 175 T1D = VFMA(LDK(KP923879532), T1y, T1x);
cannam@95 176 {
cannam@95 177 V T1n, T1v, T1C, T1E;
cannam@95 178 T1n = VFNMS(LDK(KP923879532), T1m, T1f);
cannam@95 179 T1v = VFMA(LDK(KP923879532), T1m, T1f);
cannam@95 180 T1C = VFMA(LDK(KP923879532), T1B, T1A);
cannam@95 181 T1E = VFNMS(LDK(KP923879532), T1B, T1A);
cannam@95 182 ST(&(x[WS(rs, 8)]), VSUB(T19, T1a), ms, &(x[0]));
cannam@95 183 ST(&(x[0]), VADD(T19, T1a), ms, &(x[0]));
cannam@95 184 ST(&(x[WS(rs, 4)]), VFMAI(T18, T15), ms, &(x[0]));
cannam@95 185 ST(&(x[WS(rs, 12)]), VFNMSI(T18, T15), ms, &(x[0]));
cannam@95 186 {
cannam@95 187 V T10, T12, TK, T11;
cannam@95 188 T10 = VFNMS(LDK(KP707106781), TZ, TY);
cannam@95 189 T12 = VFMA(LDK(KP707106781), TZ, TY);
cannam@95 190 TK = VFNMS(LDK(KP707106781), TJ, Tg);
cannam@95 191 T11 = VFMA(LDK(KP707106781), TJ, Tg);
cannam@95 192 ST(&(x[WS(rs, 15)]), VFNMSI(T1w, T1v), ms, &(x[WS(rs, 1)]));
cannam@95 193 ST(&(x[WS(rs, 1)]), VFMAI(T1w, T1v), ms, &(x[WS(rs, 1)]));
cannam@95 194 ST(&(x[WS(rs, 9)]), VFMAI(T1u, T1n), ms, &(x[WS(rs, 1)]));
cannam@95 195 ST(&(x[WS(rs, 7)]), VFNMSI(T1u, T1n), ms, &(x[WS(rs, 1)]));
cannam@95 196 ST(&(x[WS(rs, 3)]), VFNMSI(T1E, T1D), ms, &(x[WS(rs, 1)]));
cannam@95 197 ST(&(x[WS(rs, 13)]), VFMAI(T1E, T1D), ms, &(x[WS(rs, 1)]));
cannam@95 198 ST(&(x[WS(rs, 11)]), VFNMSI(T1C, T1z), ms, &(x[WS(rs, 1)]));
cannam@95 199 ST(&(x[WS(rs, 5)]), VFMAI(T1C, T1z), ms, &(x[WS(rs, 1)]));
cannam@95 200 ST(&(x[WS(rs, 2)]), VFMAI(T12, T11), ms, &(x[0]));
cannam@95 201 ST(&(x[WS(rs, 14)]), VFNMSI(T12, T11), ms, &(x[0]));
cannam@95 202 ST(&(x[WS(rs, 10)]), VFMAI(T10, TK), ms, &(x[0]));
cannam@95 203 ST(&(x[WS(rs, 6)]), VFNMSI(T10, TK), ms, &(x[0]));
cannam@95 204 }
cannam@95 205 }
cannam@95 206 }
cannam@95 207 }
cannam@95 208 }
cannam@95 209 }
cannam@95 210 }
cannam@95 211 }
cannam@95 212 VLEAVE();
cannam@95 213 }
cannam@95 214
cannam@95 215 static const tw_instr twinstr[] = {
cannam@95 216 VTW(0, 1),
cannam@95 217 VTW(0, 3),
cannam@95 218 VTW(0, 9),
cannam@95 219 VTW(0, 15),
cannam@95 220 {TW_NEXT, VL, 0}
cannam@95 221 };
cannam@95 222
cannam@95 223 static const ct_desc desc = { 16, XSIMD_STRING("t3bv_16"), twinstr, &GENUS, {64, 52, 34, 0}, 0, 0, 0 };
cannam@95 224
cannam@95 225 void XSIMD(codelet_t3bv_16) (planner *p) {
cannam@95 226 X(kdft_dit_register) (p, t3bv_16, &desc);
cannam@95 227 }
cannam@95 228 #else /* HAVE_FMA */
cannam@95 229
cannam@95 230 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3bv_16 -include t3b.h -sign 1 */
cannam@95 231
cannam@95 232 /*
cannam@95 233 * This function contains 98 FP additions, 64 FP multiplications,
cannam@95 234 * (or, 94 additions, 60 multiplications, 4 fused multiply/add),
cannam@95 235 * 51 stack variables, 3 constants, and 32 memory accesses
cannam@95 236 */
cannam@95 237 #include "t3b.h"
cannam@95 238
cannam@95 239 static void t3bv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 240 {
cannam@95 241 DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
cannam@95 242 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
cannam@95 243 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@95 244 {
cannam@95 245 INT m;
cannam@95 246 R *x;
cannam@95 247 x = ii;
cannam@95 248 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) {
cannam@95 249 V T1, T8, T9, Tl, Ti, TE, T4, Ta, TO, TV, Td, Tm, TA, TH, Ts;
cannam@95 250 T1 = LDW(&(W[0]));
cannam@95 251 T8 = LDW(&(W[TWVL * 2]));
cannam@95 252 T9 = VZMUL(T1, T8);
cannam@95 253 Tl = VZMULJ(T1, T8);
cannam@95 254 Ti = LDW(&(W[TWVL * 6]));
cannam@95 255 TE = VZMULJ(T1, Ti);
cannam@95 256 T4 = LDW(&(W[TWVL * 4]));
cannam@95 257 Ta = VZMULJ(T9, T4);
cannam@95 258 TO = VZMUL(T8, T4);
cannam@95 259 TV = VZMULJ(T1, T4);
cannam@95 260 Td = VZMUL(T9, T4);
cannam@95 261 Tm = VZMULJ(Tl, T4);
cannam@95 262 TA = VZMUL(T1, T4);
cannam@95 263 TH = VZMULJ(T8, T4);
cannam@95 264 Ts = VZMUL(Tl, T4);
cannam@95 265 {
cannam@95 266 V TY, T1q, TR, T1r, T1m, T1n, TL, TZ, T1f, T1g, T1h, Th, T11, T1i, T1j;
cannam@95 267 V T1k, Tw, T12, TU, TX, TW;
cannam@95 268 TU = LD(&(x[0]), ms, &(x[0]));
cannam@95 269 TW = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@95 270 TX = VZMUL(TV, TW);
cannam@95 271 TY = VSUB(TU, TX);
cannam@95 272 T1q = VADD(TU, TX);
cannam@95 273 {
cannam@95 274 V TN, TQ, TM, TP;
cannam@95 275 TM = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@95 276 TN = VZMUL(T9, TM);
cannam@95 277 TP = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
cannam@95 278 TQ = VZMUL(TO, TP);
cannam@95 279 TR = VSUB(TN, TQ);
cannam@95 280 T1r = VADD(TN, TQ);
cannam@95 281 }
cannam@95 282 {
cannam@95 283 V Tz, TJ, TC, TG, TD, TK;
cannam@95 284 {
cannam@95 285 V Ty, TI, TB, TF;
cannam@95 286 Ty = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@95 287 Tz = VZMUL(Tl, Ty);
cannam@95 288 TI = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@95 289 TJ = VZMUL(TH, TI);
cannam@95 290 TB = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@95 291 TC = VZMUL(TA, TB);
cannam@95 292 TF = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
cannam@95 293 TG = VZMUL(TE, TF);
cannam@95 294 }
cannam@95 295 T1m = VADD(Tz, TC);
cannam@95 296 T1n = VADD(TG, TJ);
cannam@95 297 TD = VSUB(Tz, TC);
cannam@95 298 TK = VSUB(TG, TJ);
cannam@95 299 TL = VMUL(LDK(KP707106781), VSUB(TD, TK));
cannam@95 300 TZ = VMUL(LDK(KP707106781), VADD(TD, TK));
cannam@95 301 }
cannam@95 302 {
cannam@95 303 V T3, Tf, T6, Tc, T7, Tg;
cannam@95 304 {
cannam@95 305 V T2, Te, T5, Tb;
cannam@95 306 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@95 307 T3 = VZMUL(T1, T2);
cannam@95 308 Te = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
cannam@95 309 Tf = VZMUL(Td, Te);
cannam@95 310 T5 = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@95 311 T6 = VZMUL(T4, T5);
cannam@95 312 Tb = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@95 313 Tc = VZMUL(Ta, Tb);
cannam@95 314 }
cannam@95 315 T1f = VADD(T3, T6);
cannam@95 316 T1g = VADD(Tc, Tf);
cannam@95 317 T1h = VSUB(T1f, T1g);
cannam@95 318 T7 = VSUB(T3, T6);
cannam@95 319 Tg = VSUB(Tc, Tf);
cannam@95 320 Th = VFNMS(LDK(KP382683432), Tg, VMUL(LDK(KP923879532), T7));
cannam@95 321 T11 = VFMA(LDK(KP382683432), T7, VMUL(LDK(KP923879532), Tg));
cannam@95 322 }
cannam@95 323 {
cannam@95 324 V Tk, Tu, To, Tr, Tp, Tv;
cannam@95 325 {
cannam@95 326 V Tj, Tt, Tn, Tq;
cannam@95 327 Tj = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
cannam@95 328 Tk = VZMUL(Ti, Tj);
cannam@95 329 Tt = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@95 330 Tu = VZMUL(Ts, Tt);
cannam@95 331 Tn = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@95 332 To = VZMUL(Tm, Tn);
cannam@95 333 Tq = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@95 334 Tr = VZMUL(T8, Tq);
cannam@95 335 }
cannam@95 336 T1i = VADD(Tk, To);
cannam@95 337 T1j = VADD(Tr, Tu);
cannam@95 338 T1k = VSUB(T1i, T1j);
cannam@95 339 Tp = VSUB(Tk, To);
cannam@95 340 Tv = VSUB(Tr, Tu);
cannam@95 341 Tw = VFMA(LDK(KP923879532), Tp, VMUL(LDK(KP382683432), Tv));
cannam@95 342 T12 = VFNMS(LDK(KP382683432), Tp, VMUL(LDK(KP923879532), Tv));
cannam@95 343 }
cannam@95 344 {
cannam@95 345 V T1p, T1v, T1u, T1w;
cannam@95 346 {
cannam@95 347 V T1l, T1o, T1s, T1t;
cannam@95 348 T1l = VMUL(LDK(KP707106781), VSUB(T1h, T1k));
cannam@95 349 T1o = VSUB(T1m, T1n);
cannam@95 350 T1p = VBYI(VSUB(T1l, T1o));
cannam@95 351 T1v = VBYI(VADD(T1o, T1l));
cannam@95 352 T1s = VSUB(T1q, T1r);
cannam@95 353 T1t = VMUL(LDK(KP707106781), VADD(T1h, T1k));
cannam@95 354 T1u = VSUB(T1s, T1t);
cannam@95 355 T1w = VADD(T1s, T1t);
cannam@95 356 }
cannam@95 357 ST(&(x[WS(rs, 6)]), VADD(T1p, T1u), ms, &(x[0]));
cannam@95 358 ST(&(x[WS(rs, 14)]), VSUB(T1w, T1v), ms, &(x[0]));
cannam@95 359 ST(&(x[WS(rs, 10)]), VSUB(T1u, T1p), ms, &(x[0]));
cannam@95 360 ST(&(x[WS(rs, 2)]), VADD(T1v, T1w), ms, &(x[0]));
cannam@95 361 }
cannam@95 362 {
cannam@95 363 V T1z, T1D, T1C, T1E;
cannam@95 364 {
cannam@95 365 V T1x, T1y, T1A, T1B;
cannam@95 366 T1x = VADD(T1q, T1r);
cannam@95 367 T1y = VADD(T1m, T1n);
cannam@95 368 T1z = VSUB(T1x, T1y);
cannam@95 369 T1D = VADD(T1x, T1y);
cannam@95 370 T1A = VADD(T1f, T1g);
cannam@95 371 T1B = VADD(T1i, T1j);
cannam@95 372 T1C = VBYI(VSUB(T1A, T1B));
cannam@95 373 T1E = VADD(T1A, T1B);
cannam@95 374 }
cannam@95 375 ST(&(x[WS(rs, 12)]), VSUB(T1z, T1C), ms, &(x[0]));
cannam@95 376 ST(&(x[0]), VADD(T1D, T1E), ms, &(x[0]));
cannam@95 377 ST(&(x[WS(rs, 4)]), VADD(T1z, T1C), ms, &(x[0]));
cannam@95 378 ST(&(x[WS(rs, 8)]), VSUB(T1D, T1E), ms, &(x[0]));
cannam@95 379 }
cannam@95 380 {
cannam@95 381 V TT, T15, T14, T16;
cannam@95 382 {
cannam@95 383 V Tx, TS, T10, T13;
cannam@95 384 Tx = VSUB(Th, Tw);
cannam@95 385 TS = VSUB(TL, TR);
cannam@95 386 TT = VBYI(VSUB(Tx, TS));
cannam@95 387 T15 = VBYI(VADD(TS, Tx));
cannam@95 388 T10 = VSUB(TY, TZ);
cannam@95 389 T13 = VSUB(T11, T12);
cannam@95 390 T14 = VSUB(T10, T13);
cannam@95 391 T16 = VADD(T10, T13);
cannam@95 392 }
cannam@95 393 ST(&(x[WS(rs, 5)]), VADD(TT, T14), ms, &(x[WS(rs, 1)]));
cannam@95 394 ST(&(x[WS(rs, 13)]), VSUB(T16, T15), ms, &(x[WS(rs, 1)]));
cannam@95 395 ST(&(x[WS(rs, 11)]), VSUB(T14, TT), ms, &(x[WS(rs, 1)]));
cannam@95 396 ST(&(x[WS(rs, 3)]), VADD(T15, T16), ms, &(x[WS(rs, 1)]));
cannam@95 397 }
cannam@95 398 {
cannam@95 399 V T19, T1d, T1c, T1e;
cannam@95 400 {
cannam@95 401 V T17, T18, T1a, T1b;
cannam@95 402 T17 = VADD(TY, TZ);
cannam@95 403 T18 = VADD(Th, Tw);
cannam@95 404 T19 = VADD(T17, T18);
cannam@95 405 T1d = VSUB(T17, T18);
cannam@95 406 T1a = VADD(TR, TL);
cannam@95 407 T1b = VADD(T11, T12);
cannam@95 408 T1c = VBYI(VADD(T1a, T1b));
cannam@95 409 T1e = VBYI(VSUB(T1b, T1a));
cannam@95 410 }
cannam@95 411 ST(&(x[WS(rs, 15)]), VSUB(T19, T1c), ms, &(x[WS(rs, 1)]));
cannam@95 412 ST(&(x[WS(rs, 7)]), VADD(T1d, T1e), ms, &(x[WS(rs, 1)]));
cannam@95 413 ST(&(x[WS(rs, 1)]), VADD(T19, T1c), ms, &(x[WS(rs, 1)]));
cannam@95 414 ST(&(x[WS(rs, 9)]), VSUB(T1d, T1e), ms, &(x[WS(rs, 1)]));
cannam@95 415 }
cannam@95 416 }
cannam@95 417 }
cannam@95 418 }
cannam@95 419 VLEAVE();
cannam@95 420 }
cannam@95 421
cannam@95 422 static const tw_instr twinstr[] = {
cannam@95 423 VTW(0, 1),
cannam@95 424 VTW(0, 3),
cannam@95 425 VTW(0, 9),
cannam@95 426 VTW(0, 15),
cannam@95 427 {TW_NEXT, VL, 0}
cannam@95 428 };
cannam@95 429
cannam@95 430 static const ct_desc desc = { 16, XSIMD_STRING("t3bv_16"), twinstr, &GENUS, {94, 60, 4, 0}, 0, 0, 0 };
cannam@95 431
cannam@95 432 void XSIMD(codelet_t3bv_16) (planner *p) {
cannam@95 433 X(kdft_dit_register) (p, t3bv_16, &desc);
cannam@95 434 }
cannam@95 435 #endif /* HAVE_FMA */