annotate src/fftw-3.3.5/dft/simd/common/t3fv_20.c @ 154:4664ac0c1032

Add Opus sources and macOS builds
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 23 Jan 2019 13:48:08 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:44:02 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-dft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 20 -name t3fv_20 -include t3f.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 138 FP additions, 118 FP multiplications,
cannam@127 32 * (or, 92 additions, 72 multiplications, 46 fused multiply/add),
cannam@127 33 * 90 stack variables, 4 constants, and 40 memory accesses
cannam@127 34 */
cannam@127 35 #include "t3f.h"
cannam@127 36
cannam@127 37 static void t3fv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@127 40 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@127 41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
cannam@127 42 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@127 43 {
cannam@127 44 INT m;
cannam@127 45 R *x;
cannam@127 46 x = ri;
cannam@127 47 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(20, rs)) {
cannam@127 48 V T1k, T1w, T1r, T1z, T1o, T1y, T1v, T1h;
cannam@127 49 {
cannam@127 50 V T2, T8, T3, Td;
cannam@127 51 T2 = LDW(&(W[0]));
cannam@127 52 T8 = LDW(&(W[TWVL * 2]));
cannam@127 53 T3 = LDW(&(W[TWVL * 4]));
cannam@127 54 Td = LDW(&(W[TWVL * 6]));
cannam@127 55 {
cannam@127 56 V T7, TM, T1F, T23, T1p, Tp, T1j, T27, T1P, T1I, T1i, T1L, T28, T1S, T1q;
cannam@127 57 V TE, T1n, T1d, T26, T2e;
cannam@127 58 {
cannam@127 59 V T1, TK, T5, TH;
cannam@127 60 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@127 61 TK = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
cannam@127 62 T5 = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@127 63 TH = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@127 64 {
cannam@127 65 V TA, Tx, TU, T1O, T14, Th, T1G, T1R, T1b, T1J, To, Ts, TV, Tv, TO;
cannam@127 66 V TQ, TT, Ty, TB;
cannam@127 67 {
cannam@127 68 V Tq, Tt, T17, T1a, Tk, Tn;
cannam@127 69 {
cannam@127 70 V Tl, Ti, T15, T18, TZ, Tc, T6, Tb, Tf, T10, T12, TL;
cannam@127 71 {
cannam@127 72 V TJ, Ta, T9, T4;
cannam@127 73 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@127 74 TA = VZMULJ(T2, T8);
cannam@127 75 T9 = VZMUL(T2, T8);
cannam@127 76 Tx = VZMUL(T8, T3);
cannam@127 77 Tl = VZMULJ(T8, T3);
cannam@127 78 T4 = VZMUL(T2, T3);
cannam@127 79 Tq = VZMULJ(T2, T3);
cannam@127 80 Tt = VZMULJ(T2, Td);
cannam@127 81 Ti = VZMULJ(T8, Td);
cannam@127 82 T15 = VZMULJ(TA, Td);
cannam@127 83 T18 = VZMULJ(TA, T3);
cannam@127 84 TU = VZMUL(TA, T3);
cannam@127 85 TJ = VZMULJ(T9, Td);
cannam@127 86 TZ = VZMUL(T9, T3);
cannam@127 87 Tc = VZMULJ(T9, T3);
cannam@127 88 T6 = VZMULJ(T4, T5);
cannam@127 89 Tb = VZMULJ(T9, Ta);
cannam@127 90 Tf = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
cannam@127 91 T10 = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
cannam@127 92 T12 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@127 93 TL = VZMULJ(TJ, TK);
cannam@127 94 }
cannam@127 95 {
cannam@127 96 V T1D, T11, T13, T19, T1E, Tg, T16, TI, Te, Tj, Tm;
cannam@127 97 T16 = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)]));
cannam@127 98 TI = VZMULJ(Tc, TH);
cannam@127 99 Te = VZMULJ(Tc, Td);
cannam@127 100 T7 = VSUB(T1, T6);
cannam@127 101 T1D = VADD(T1, T6);
cannam@127 102 T11 = VZMULJ(TZ, T10);
cannam@127 103 T13 = VZMULJ(T8, T12);
cannam@127 104 T19 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@127 105 T17 = VZMULJ(T15, T16);
cannam@127 106 TM = VSUB(TI, TL);
cannam@127 107 T1E = VADD(TI, TL);
cannam@127 108 Tg = VZMULJ(Te, Tf);
cannam@127 109 Tj = LD(&(x[WS(rs, 16)]), ms, &(x[0]));
cannam@127 110 Tm = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@127 111 T1O = VADD(T11, T13);
cannam@127 112 T14 = VSUB(T11, T13);
cannam@127 113 T1a = VZMULJ(T18, T19);
cannam@127 114 T1F = VSUB(T1D, T1E);
cannam@127 115 T23 = VADD(T1D, T1E);
cannam@127 116 Th = VSUB(Tb, Tg);
cannam@127 117 T1G = VADD(Tb, Tg);
cannam@127 118 Tk = VZMULJ(Ti, Tj);
cannam@127 119 Tn = VZMULJ(Tl, Tm);
cannam@127 120 }
cannam@127 121 }
cannam@127 122 {
cannam@127 123 V Tr, Tu, TN, TP, TS;
cannam@127 124 Tr = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@127 125 T1R = VADD(T17, T1a);
cannam@127 126 T1b = VSUB(T17, T1a);
cannam@127 127 Tu = LD(&(x[WS(rs, 18)]), ms, &(x[0]));
cannam@127 128 TN = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@127 129 TP = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)]));
cannam@127 130 TS = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@127 131 T1J = VADD(Tk, Tn);
cannam@127 132 To = VSUB(Tk, Tn);
cannam@127 133 Ts = VZMULJ(Tq, Tr);
cannam@127 134 TV = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@127 135 Tv = VZMULJ(Tt, Tu);
cannam@127 136 TO = VZMULJ(T3, TN);
cannam@127 137 TQ = VZMULJ(Td, TP);
cannam@127 138 TT = VZMULJ(T2, TS);
cannam@127 139 Ty = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
cannam@127 140 TB = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@127 141 }
cannam@127 142 }
cannam@127 143 {
cannam@127 144 V T1N, Tw, T1H, TR, Tz, TC, T1c, TX, T1K, TW;
cannam@127 145 T1p = VSUB(Th, To);
cannam@127 146 Tp = VADD(Th, To);
cannam@127 147 TW = VZMULJ(TU, TV);
cannam@127 148 T1N = VADD(Ts, Tv);
cannam@127 149 Tw = VSUB(Ts, Tv);
cannam@127 150 T1H = VADD(TO, TQ);
cannam@127 151 TR = VSUB(TO, TQ);
cannam@127 152 Tz = VZMULJ(Tx, Ty);
cannam@127 153 TC = VZMULJ(TA, TB);
cannam@127 154 T1j = VSUB(T1b, T14);
cannam@127 155 T1c = VADD(T14, T1b);
cannam@127 156 TX = VSUB(TT, TW);
cannam@127 157 T1K = VADD(TT, TW);
cannam@127 158 T27 = VADD(T1N, T1O);
cannam@127 159 T1P = VSUB(T1N, T1O);
cannam@127 160 {
cannam@127 161 V TD, T1Q, T24, TY, T25;
cannam@127 162 TD = VSUB(Tz, TC);
cannam@127 163 T1Q = VADD(Tz, TC);
cannam@127 164 T1I = VSUB(T1G, T1H);
cannam@127 165 T24 = VADD(T1G, T1H);
cannam@127 166 TY = VADD(TR, TX);
cannam@127 167 T1i = VSUB(TX, TR);
cannam@127 168 T25 = VADD(T1J, T1K);
cannam@127 169 T1L = VSUB(T1J, T1K);
cannam@127 170 T28 = VADD(T1Q, T1R);
cannam@127 171 T1S = VSUB(T1Q, T1R);
cannam@127 172 T1q = VSUB(Tw, TD);
cannam@127 173 TE = VADD(Tw, TD);
cannam@127 174 T1n = VSUB(T1c, TY);
cannam@127 175 T1d = VADD(TY, T1c);
cannam@127 176 T26 = VADD(T24, T25);
cannam@127 177 T2e = VSUB(T24, T25);
cannam@127 178 }
cannam@127 179 }
cannam@127 180 }
cannam@127 181 }
cannam@127 182 {
cannam@127 183 V T1M, T1Z, T1Y, T1T, T29, T2f, T1g, TF, T1m, T1e;
cannam@127 184 T1M = VADD(T1I, T1L);
cannam@127 185 T1Z = VSUB(T1I, T1L);
cannam@127 186 T1Y = VSUB(T1P, T1S);
cannam@127 187 T1T = VADD(T1P, T1S);
cannam@127 188 T29 = VADD(T27, T28);
cannam@127 189 T2f = VSUB(T27, T28);
cannam@127 190 T1g = VSUB(Tp, TE);
cannam@127 191 TF = VADD(Tp, TE);
cannam@127 192 T1m = VFNMS(LDK(KP250000000), T1d, TM);
cannam@127 193 T1e = VADD(TM, T1d);
cannam@127 194 {
cannam@127 195 V T1W, T2c, T1f, T2i, T2g, T22, T20, T1V, T2b, T1U, T2a, TG;
cannam@127 196 T1k = VFMA(LDK(KP618033988), T1j, T1i);
cannam@127 197 T1w = VFNMS(LDK(KP618033988), T1i, T1j);
cannam@127 198 T1W = VSUB(T1M, T1T);
cannam@127 199 T1U = VADD(T1M, T1T);
cannam@127 200 T2c = VSUB(T26, T29);
cannam@127 201 T2a = VADD(T26, T29);
cannam@127 202 T1f = VFNMS(LDK(KP250000000), TF, T7);
cannam@127 203 TG = VADD(T7, TF);
cannam@127 204 T2i = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T2e, T2f));
cannam@127 205 T2g = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T2f, T2e));
cannam@127 206 T22 = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1Y, T1Z));
cannam@127 207 T20 = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1Z, T1Y));
cannam@127 208 ST(&(x[WS(rs, 10)]), VADD(T1F, T1U), ms, &(x[0]));
cannam@127 209 T1V = VFNMS(LDK(KP250000000), T1U, T1F);
cannam@127 210 ST(&(x[0]), VADD(T23, T2a), ms, &(x[0]));
cannam@127 211 T2b = VFNMS(LDK(KP250000000), T2a, T23);
cannam@127 212 ST(&(x[WS(rs, 15)]), VFMAI(T1e, TG), ms, &(x[WS(rs, 1)]));
cannam@127 213 ST(&(x[WS(rs, 5)]), VFNMSI(T1e, TG), ms, &(x[WS(rs, 1)]));
cannam@127 214 T1r = VFMA(LDK(KP618033988), T1q, T1p);
cannam@127 215 T1z = VFNMS(LDK(KP618033988), T1p, T1q);
cannam@127 216 {
cannam@127 217 V T21, T1X, T2h, T2d;
cannam@127 218 T21 = VFMA(LDK(KP559016994), T1W, T1V);
cannam@127 219 T1X = VFNMS(LDK(KP559016994), T1W, T1V);
cannam@127 220 T2h = VFNMS(LDK(KP559016994), T2c, T2b);
cannam@127 221 T2d = VFMA(LDK(KP559016994), T2c, T2b);
cannam@127 222 ST(&(x[WS(rs, 18)]), VFNMSI(T20, T1X), ms, &(x[0]));
cannam@127 223 ST(&(x[WS(rs, 2)]), VFMAI(T20, T1X), ms, &(x[0]));
cannam@127 224 ST(&(x[WS(rs, 14)]), VFMAI(T22, T21), ms, &(x[0]));
cannam@127 225 ST(&(x[WS(rs, 6)]), VFNMSI(T22, T21), ms, &(x[0]));
cannam@127 226 ST(&(x[WS(rs, 16)]), VFNMSI(T2g, T2d), ms, &(x[0]));
cannam@127 227 ST(&(x[WS(rs, 4)]), VFMAI(T2g, T2d), ms, &(x[0]));
cannam@127 228 ST(&(x[WS(rs, 12)]), VFMAI(T2i, T2h), ms, &(x[0]));
cannam@127 229 ST(&(x[WS(rs, 8)]), VFNMSI(T2i, T2h), ms, &(x[0]));
cannam@127 230 T1o = VFNMS(LDK(KP559016994), T1n, T1m);
cannam@127 231 T1y = VFMA(LDK(KP559016994), T1n, T1m);
cannam@127 232 T1v = VFNMS(LDK(KP559016994), T1g, T1f);
cannam@127 233 T1h = VFMA(LDK(KP559016994), T1g, T1f);
cannam@127 234 }
cannam@127 235 }
cannam@127 236 }
cannam@127 237 }
cannam@127 238 }
cannam@127 239 {
cannam@127 240 V T1C, T1A, T1s, T1u, T1l, T1t, T1B, T1x;
cannam@127 241 T1C = VFMA(LDK(KP951056516), T1z, T1y);
cannam@127 242 T1A = VFNMS(LDK(KP951056516), T1z, T1y);
cannam@127 243 T1s = VFMA(LDK(KP951056516), T1r, T1o);
cannam@127 244 T1u = VFNMS(LDK(KP951056516), T1r, T1o);
cannam@127 245 T1l = VFMA(LDK(KP951056516), T1k, T1h);
cannam@127 246 T1t = VFNMS(LDK(KP951056516), T1k, T1h);
cannam@127 247 T1B = VFMA(LDK(KP951056516), T1w, T1v);
cannam@127 248 T1x = VFNMS(LDK(KP951056516), T1w, T1v);
cannam@127 249 ST(&(x[WS(rs, 11)]), VFMAI(T1u, T1t), ms, &(x[WS(rs, 1)]));
cannam@127 250 ST(&(x[WS(rs, 9)]), VFNMSI(T1u, T1t), ms, &(x[WS(rs, 1)]));
cannam@127 251 ST(&(x[WS(rs, 19)]), VFMAI(T1s, T1l), ms, &(x[WS(rs, 1)]));
cannam@127 252 ST(&(x[WS(rs, 1)]), VFNMSI(T1s, T1l), ms, &(x[WS(rs, 1)]));
cannam@127 253 ST(&(x[WS(rs, 3)]), VFMAI(T1A, T1x), ms, &(x[WS(rs, 1)]));
cannam@127 254 ST(&(x[WS(rs, 17)]), VFNMSI(T1A, T1x), ms, &(x[WS(rs, 1)]));
cannam@127 255 ST(&(x[WS(rs, 7)]), VFMAI(T1C, T1B), ms, &(x[WS(rs, 1)]));
cannam@127 256 ST(&(x[WS(rs, 13)]), VFNMSI(T1C, T1B), ms, &(x[WS(rs, 1)]));
cannam@127 257 }
cannam@127 258 }
cannam@127 259 }
cannam@127 260 VLEAVE();
cannam@127 261 }
cannam@127 262
cannam@127 263 static const tw_instr twinstr[] = {
cannam@127 264 VTW(0, 1),
cannam@127 265 VTW(0, 3),
cannam@127 266 VTW(0, 9),
cannam@127 267 VTW(0, 19),
cannam@127 268 {TW_NEXT, VL, 0}
cannam@127 269 };
cannam@127 270
cannam@127 271 static const ct_desc desc = { 20, XSIMD_STRING("t3fv_20"), twinstr, &GENUS, {92, 72, 46, 0}, 0, 0, 0 };
cannam@127 272
cannam@127 273 void XSIMD(codelet_t3fv_20) (planner *p) {
cannam@127 274 X(kdft_dit_register) (p, t3fv_20, &desc);
cannam@127 275 }
cannam@127 276 #else /* HAVE_FMA */
cannam@127 277
cannam@127 278 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 20 -name t3fv_20 -include t3f.h */
cannam@127 279
cannam@127 280 /*
cannam@127 281 * This function contains 138 FP additions, 92 FP multiplications,
cannam@127 282 * (or, 126 additions, 80 multiplications, 12 fused multiply/add),
cannam@127 283 * 73 stack variables, 4 constants, and 40 memory accesses
cannam@127 284 */
cannam@127 285 #include "t3f.h"
cannam@127 286
cannam@127 287 static void t3fv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 288 {
cannam@127 289 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
cannam@127 290 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@127 291 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@127 292 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@127 293 {
cannam@127 294 INT m;
cannam@127 295 R *x;
cannam@127 296 x = ri;
cannam@127 297 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(20, rs)) {
cannam@127 298 V T2, T8, T9, TA, T3, Tc, T4, TZ, T18, Tl, Tq, Tx, TU, Td, Te;
cannam@127 299 V T15, Ti, Tt, TJ;
cannam@127 300 T2 = LDW(&(W[0]));
cannam@127 301 T8 = LDW(&(W[TWVL * 2]));
cannam@127 302 T9 = VZMUL(T2, T8);
cannam@127 303 TA = VZMULJ(T2, T8);
cannam@127 304 T3 = LDW(&(W[TWVL * 4]));
cannam@127 305 Tc = VZMULJ(T9, T3);
cannam@127 306 T4 = VZMUL(T2, T3);
cannam@127 307 TZ = VZMUL(T9, T3);
cannam@127 308 T18 = VZMULJ(TA, T3);
cannam@127 309 Tl = VZMULJ(T8, T3);
cannam@127 310 Tq = VZMULJ(T2, T3);
cannam@127 311 Tx = VZMUL(T8, T3);
cannam@127 312 TU = VZMUL(TA, T3);
cannam@127 313 Td = LDW(&(W[TWVL * 6]));
cannam@127 314 Te = VZMULJ(Tc, Td);
cannam@127 315 T15 = VZMULJ(TA, Td);
cannam@127 316 Ti = VZMULJ(T8, Td);
cannam@127 317 Tt = VZMULJ(T2, Td);
cannam@127 318 TJ = VZMULJ(T9, Td);
cannam@127 319 {
cannam@127 320 V T7, TM, T1U, T2d, T1i, T1p, T1q, T1j, Tp, TE, TF, T26, T27, T2b, T1M;
cannam@127 321 V T1P, T1V, TY, T1c, T1d, T23, T24, T2a, T1F, T1I, T1W, TG, T1e;
cannam@127 322 {
cannam@127 323 V T1, TL, T6, TI, TK, T5, TH, T1S, T1T;
cannam@127 324 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@127 325 TK = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
cannam@127 326 TL = VZMULJ(TJ, TK);
cannam@127 327 T5 = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@127 328 T6 = VZMULJ(T4, T5);
cannam@127 329 TH = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@127 330 TI = VZMULJ(Tc, TH);
cannam@127 331 T7 = VSUB(T1, T6);
cannam@127 332 TM = VSUB(TI, TL);
cannam@127 333 T1S = VADD(T1, T6);
cannam@127 334 T1T = VADD(TI, TL);
cannam@127 335 T1U = VSUB(T1S, T1T);
cannam@127 336 T2d = VADD(T1S, T1T);
cannam@127 337 }
cannam@127 338 {
cannam@127 339 V Th, T1K, T14, T1E, T1b, T1H, To, T1N, Tw, T1D, TR, T1L, TX, T1O, TD;
cannam@127 340 V T1G;
cannam@127 341 {
cannam@127 342 V Tb, Tg, Ta, Tf;
cannam@127 343 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@127 344 Tb = VZMULJ(T9, Ta);
cannam@127 345 Tf = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
cannam@127 346 Tg = VZMULJ(Te, Tf);
cannam@127 347 Th = VSUB(Tb, Tg);
cannam@127 348 T1K = VADD(Tb, Tg);
cannam@127 349 }
cannam@127 350 {
cannam@127 351 V T11, T13, T10, T12;
cannam@127 352 T10 = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
cannam@127 353 T11 = VZMULJ(TZ, T10);
cannam@127 354 T12 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@127 355 T13 = VZMULJ(T8, T12);
cannam@127 356 T14 = VSUB(T11, T13);
cannam@127 357 T1E = VADD(T11, T13);
cannam@127 358 }
cannam@127 359 {
cannam@127 360 V T17, T1a, T16, T19;
cannam@127 361 T16 = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)]));
cannam@127 362 T17 = VZMULJ(T15, T16);
cannam@127 363 T19 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@127 364 T1a = VZMULJ(T18, T19);
cannam@127 365 T1b = VSUB(T17, T1a);
cannam@127 366 T1H = VADD(T17, T1a);
cannam@127 367 }
cannam@127 368 {
cannam@127 369 V Tk, Tn, Tj, Tm;
cannam@127 370 Tj = LD(&(x[WS(rs, 16)]), ms, &(x[0]));
cannam@127 371 Tk = VZMULJ(Ti, Tj);
cannam@127 372 Tm = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@127 373 Tn = VZMULJ(Tl, Tm);
cannam@127 374 To = VSUB(Tk, Tn);
cannam@127 375 T1N = VADD(Tk, Tn);
cannam@127 376 }
cannam@127 377 {
cannam@127 378 V Ts, Tv, Tr, Tu;
cannam@127 379 Tr = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@127 380 Ts = VZMULJ(Tq, Tr);
cannam@127 381 Tu = LD(&(x[WS(rs, 18)]), ms, &(x[0]));
cannam@127 382 Tv = VZMULJ(Tt, Tu);
cannam@127 383 Tw = VSUB(Ts, Tv);
cannam@127 384 T1D = VADD(Ts, Tv);
cannam@127 385 }
cannam@127 386 {
cannam@127 387 V TO, TQ, TN, TP;
cannam@127 388 TN = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@127 389 TO = VZMULJ(T3, TN);
cannam@127 390 TP = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)]));
cannam@127 391 TQ = VZMULJ(Td, TP);
cannam@127 392 TR = VSUB(TO, TQ);
cannam@127 393 T1L = VADD(TO, TQ);
cannam@127 394 }
cannam@127 395 {
cannam@127 396 V TT, TW, TS, TV;
cannam@127 397 TS = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@127 398 TT = VZMULJ(T2, TS);
cannam@127 399 TV = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@127 400 TW = VZMULJ(TU, TV);
cannam@127 401 TX = VSUB(TT, TW);
cannam@127 402 T1O = VADD(TT, TW);
cannam@127 403 }
cannam@127 404 {
cannam@127 405 V Tz, TC, Ty, TB;
cannam@127 406 Ty = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
cannam@127 407 Tz = VZMULJ(Tx, Ty);
cannam@127 408 TB = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@127 409 TC = VZMULJ(TA, TB);
cannam@127 410 TD = VSUB(Tz, TC);
cannam@127 411 T1G = VADD(Tz, TC);
cannam@127 412 }
cannam@127 413 T1i = VSUB(TX, TR);
cannam@127 414 T1p = VSUB(Th, To);
cannam@127 415 T1q = VSUB(Tw, TD);
cannam@127 416 T1j = VSUB(T1b, T14);
cannam@127 417 Tp = VADD(Th, To);
cannam@127 418 TE = VADD(Tw, TD);
cannam@127 419 TF = VADD(Tp, TE);
cannam@127 420 T26 = VADD(T1D, T1E);
cannam@127 421 T27 = VADD(T1G, T1H);
cannam@127 422 T2b = VADD(T26, T27);
cannam@127 423 T1M = VSUB(T1K, T1L);
cannam@127 424 T1P = VSUB(T1N, T1O);
cannam@127 425 T1V = VADD(T1M, T1P);
cannam@127 426 TY = VADD(TR, TX);
cannam@127 427 T1c = VADD(T14, T1b);
cannam@127 428 T1d = VADD(TY, T1c);
cannam@127 429 T23 = VADD(T1K, T1L);
cannam@127 430 T24 = VADD(T1N, T1O);
cannam@127 431 T2a = VADD(T23, T24);
cannam@127 432 T1F = VSUB(T1D, T1E);
cannam@127 433 T1I = VSUB(T1G, T1H);
cannam@127 434 T1W = VADD(T1F, T1I);
cannam@127 435 }
cannam@127 436 TG = VADD(T7, TF);
cannam@127 437 T1e = VBYI(VADD(TM, T1d));
cannam@127 438 ST(&(x[WS(rs, 5)]), VSUB(TG, T1e), ms, &(x[WS(rs, 1)]));
cannam@127 439 ST(&(x[WS(rs, 15)]), VADD(TG, T1e), ms, &(x[WS(rs, 1)]));
cannam@127 440 {
cannam@127 441 V T2c, T2e, T2f, T29, T2i, T25, T28, T2h, T2g;
cannam@127 442 T2c = VMUL(LDK(KP559016994), VSUB(T2a, T2b));
cannam@127 443 T2e = VADD(T2a, T2b);
cannam@127 444 T2f = VFNMS(LDK(KP250000000), T2e, T2d);
cannam@127 445 T25 = VSUB(T23, T24);
cannam@127 446 T28 = VSUB(T26, T27);
cannam@127 447 T29 = VBYI(VFMA(LDK(KP951056516), T25, VMUL(LDK(KP587785252), T28)));
cannam@127 448 T2i = VBYI(VFNMS(LDK(KP587785252), T25, VMUL(LDK(KP951056516), T28)));
cannam@127 449 ST(&(x[0]), VADD(T2d, T2e), ms, &(x[0]));
cannam@127 450 T2h = VSUB(T2f, T2c);
cannam@127 451 ST(&(x[WS(rs, 8)]), VSUB(T2h, T2i), ms, &(x[0]));
cannam@127 452 ST(&(x[WS(rs, 12)]), VADD(T2i, T2h), ms, &(x[0]));
cannam@127 453 T2g = VADD(T2c, T2f);
cannam@127 454 ST(&(x[WS(rs, 4)]), VADD(T29, T2g), ms, &(x[0]));
cannam@127 455 ST(&(x[WS(rs, 16)]), VSUB(T2g, T29), ms, &(x[0]));
cannam@127 456 }
cannam@127 457 {
cannam@127 458 V T1Z, T1X, T1Y, T1R, T22, T1J, T1Q, T21, T20;
cannam@127 459 T1Z = VMUL(LDK(KP559016994), VSUB(T1V, T1W));
cannam@127 460 T1X = VADD(T1V, T1W);
cannam@127 461 T1Y = VFNMS(LDK(KP250000000), T1X, T1U);
cannam@127 462 T1J = VSUB(T1F, T1I);
cannam@127 463 T1Q = VSUB(T1M, T1P);
cannam@127 464 T1R = VBYI(VFNMS(LDK(KP587785252), T1Q, VMUL(LDK(KP951056516), T1J)));
cannam@127 465 T22 = VBYI(VFMA(LDK(KP951056516), T1Q, VMUL(LDK(KP587785252), T1J)));
cannam@127 466 ST(&(x[WS(rs, 10)]), VADD(T1U, T1X), ms, &(x[0]));
cannam@127 467 T21 = VADD(T1Z, T1Y);
cannam@127 468 ST(&(x[WS(rs, 6)]), VSUB(T21, T22), ms, &(x[0]));
cannam@127 469 ST(&(x[WS(rs, 14)]), VADD(T22, T21), ms, &(x[0]));
cannam@127 470 T20 = VSUB(T1Y, T1Z);
cannam@127 471 ST(&(x[WS(rs, 2)]), VADD(T1R, T20), ms, &(x[0]));
cannam@127 472 ST(&(x[WS(rs, 18)]), VSUB(T20, T1R), ms, &(x[0]));
cannam@127 473 }
cannam@127 474 {
cannam@127 475 V T1k, T1r, T1z, T1w, T1o, T1y, T1h, T1v;
cannam@127 476 T1k = VFMA(LDK(KP951056516), T1i, VMUL(LDK(KP587785252), T1j));
cannam@127 477 T1r = VFMA(LDK(KP951056516), T1p, VMUL(LDK(KP587785252), T1q));
cannam@127 478 T1z = VFNMS(LDK(KP587785252), T1p, VMUL(LDK(KP951056516), T1q));
cannam@127 479 T1w = VFNMS(LDK(KP587785252), T1i, VMUL(LDK(KP951056516), T1j));
cannam@127 480 {
cannam@127 481 V T1m, T1n, T1f, T1g;
cannam@127 482 T1m = VFMS(LDK(KP250000000), T1d, TM);
cannam@127 483 T1n = VMUL(LDK(KP559016994), VSUB(T1c, TY));
cannam@127 484 T1o = VADD(T1m, T1n);
cannam@127 485 T1y = VSUB(T1n, T1m);
cannam@127 486 T1f = VMUL(LDK(KP559016994), VSUB(Tp, TE));
cannam@127 487 T1g = VFNMS(LDK(KP250000000), TF, T7);
cannam@127 488 T1h = VADD(T1f, T1g);
cannam@127 489 T1v = VSUB(T1g, T1f);
cannam@127 490 }
cannam@127 491 {
cannam@127 492 V T1l, T1s, T1B, T1C;
cannam@127 493 T1l = VADD(T1h, T1k);
cannam@127 494 T1s = VBYI(VSUB(T1o, T1r));
cannam@127 495 ST(&(x[WS(rs, 19)]), VSUB(T1l, T1s), ms, &(x[WS(rs, 1)]));
cannam@127 496 ST(&(x[WS(rs, 1)]), VADD(T1l, T1s), ms, &(x[WS(rs, 1)]));
cannam@127 497 T1B = VADD(T1v, T1w);
cannam@127 498 T1C = VBYI(VADD(T1z, T1y));
cannam@127 499 ST(&(x[WS(rs, 13)]), VSUB(T1B, T1C), ms, &(x[WS(rs, 1)]));
cannam@127 500 ST(&(x[WS(rs, 7)]), VADD(T1B, T1C), ms, &(x[WS(rs, 1)]));
cannam@127 501 }
cannam@127 502 {
cannam@127 503 V T1t, T1u, T1x, T1A;
cannam@127 504 T1t = VSUB(T1h, T1k);
cannam@127 505 T1u = VBYI(VADD(T1r, T1o));
cannam@127 506 ST(&(x[WS(rs, 11)]), VSUB(T1t, T1u), ms, &(x[WS(rs, 1)]));
cannam@127 507 ST(&(x[WS(rs, 9)]), VADD(T1t, T1u), ms, &(x[WS(rs, 1)]));
cannam@127 508 T1x = VSUB(T1v, T1w);
cannam@127 509 T1A = VBYI(VSUB(T1y, T1z));
cannam@127 510 ST(&(x[WS(rs, 17)]), VSUB(T1x, T1A), ms, &(x[WS(rs, 1)]));
cannam@127 511 ST(&(x[WS(rs, 3)]), VADD(T1x, T1A), ms, &(x[WS(rs, 1)]));
cannam@127 512 }
cannam@127 513 }
cannam@127 514 }
cannam@127 515 }
cannam@127 516 }
cannam@127 517 VLEAVE();
cannam@127 518 }
cannam@127 519
cannam@127 520 static const tw_instr twinstr[] = {
cannam@127 521 VTW(0, 1),
cannam@127 522 VTW(0, 3),
cannam@127 523 VTW(0, 9),
cannam@127 524 VTW(0, 19),
cannam@127 525 {TW_NEXT, VL, 0}
cannam@127 526 };
cannam@127 527
cannam@127 528 static const ct_desc desc = { 20, XSIMD_STRING("t3fv_20"), twinstr, &GENUS, {126, 80, 12, 0}, 0, 0, 0 };
cannam@127 529
cannam@127 530 void XSIMD(codelet_t3fv_20) (planner *p) {
cannam@127 531 X(kdft_dit_register) (p, t3fv_20, &desc);
cannam@127 532 }
cannam@127 533 #endif /* HAVE_FMA */