annotate src/fftw-3.3.3/dft/simd/common/q1bv_4.c @ 154:4664ac0c1032

Add Opus sources and macOS builds
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 23 Jan 2019 13:48:08 +0000
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@95 22 /* Generated on Sun Nov 25 07:39:33 EST 2012 */
cannam@95 23
cannam@95 24 #include "codelet-dft.h"
cannam@95 25
cannam@95 26 #ifdef HAVE_FMA
cannam@95 27
cannam@95 28 /* Generated by: ../../../genfft/gen_twidsq_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1bv_4 -include q1b.h -sign 1 */
cannam@95 29
cannam@95 30 /*
cannam@95 31 * This function contains 44 FP additions, 32 FP multiplications,
cannam@95 32 * (or, 36 additions, 24 multiplications, 8 fused multiply/add),
cannam@95 33 * 38 stack variables, 0 constants, and 32 memory accesses
cannam@95 34 */
cannam@95 35 #include "q1b.h"
cannam@95 36
cannam@95 37 static void q1bv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
cannam@95 38 {
cannam@95 39 {
cannam@95 40 INT m;
cannam@95 41 R *x;
cannam@95 42 x = ii;
cannam@95 43 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) {
cannam@95 44 V Tb, Tm, Tx, TI;
cannam@95 45 {
cannam@95 46 V Tc, T9, T3, TG, TA, TH, TD, Ta, T6, Td, Tn, To, Tq, Tr, Tf;
cannam@95 47 V Tg;
cannam@95 48 {
cannam@95 49 V T1, T2, Ty, Tz, TB, TC, T4, T5;
cannam@95 50 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@95 51 T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@95 52 Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
cannam@95 53 Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
cannam@95 54 TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
cannam@95 55 TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
cannam@95 56 T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@95 57 T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@95 58 Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
cannam@95 59 T9 = VADD(T1, T2);
cannam@95 60 T3 = VSUB(T1, T2);
cannam@95 61 TG = VADD(Ty, Tz);
cannam@95 62 TA = VSUB(Ty, Tz);
cannam@95 63 TH = VADD(TB, TC);
cannam@95 64 TD = VSUB(TB, TC);
cannam@95 65 Ta = VADD(T4, T5);
cannam@95 66 T6 = VSUB(T4, T5);
cannam@95 67 Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
cannam@95 68 Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
cannam@95 69 To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
cannam@95 70 Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
cannam@95 71 Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
cannam@95 72 Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
cannam@95 73 Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
cannam@95 74 }
cannam@95 75 {
cannam@95 76 V Tk, Te, Tv, Tp, Tw, Ts, Tl, Th, T7, TE, Tu, TF;
cannam@95 77 ST(&(x[0]), VADD(T9, Ta), ms, &(x[0]));
cannam@95 78 Tk = VADD(Tc, Td);
cannam@95 79 Te = VSUB(Tc, Td);
cannam@95 80 Tv = VADD(Tn, To);
cannam@95 81 Tp = VSUB(Tn, To);
cannam@95 82 Tw = VADD(Tq, Tr);
cannam@95 83 Ts = VSUB(Tq, Tr);
cannam@95 84 Tl = VADD(Tf, Tg);
cannam@95 85 Th = VSUB(Tf, Tg);
cannam@95 86 ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)]));
cannam@95 87 T7 = BYTW(&(W[TWVL * 4]), VFNMSI(T6, T3));
cannam@95 88 TE = BYTW(&(W[TWVL * 4]), VFNMSI(TD, TA));
cannam@95 89 {
cannam@95 90 V Tt, Ti, Tj, T8;
cannam@95 91 T8 = BYTW(&(W[0]), VFMAI(T6, T3));
cannam@95 92 ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0]));
cannam@95 93 Tt = BYTW(&(W[TWVL * 4]), VFNMSI(Ts, Tp));
cannam@95 94 ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)]));
cannam@95 95 Ti = BYTW(&(W[TWVL * 4]), VFNMSI(Th, Te));
cannam@95 96 Tj = BYTW(&(W[0]), VFMAI(Th, Te));
cannam@95 97 ST(&(x[WS(vs, 3)]), T7, ms, &(x[WS(vs, 3)]));
cannam@95 98 ST(&(x[WS(vs, 3) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
cannam@95 99 ST(&(x[WS(vs, 1)]), T8, ms, &(x[WS(vs, 1)]));
cannam@95 100 Tu = BYTW(&(W[0]), VFMAI(Ts, Tp));
cannam@95 101 ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 3)]));
cannam@95 102 TF = BYTW(&(W[0]), VFMAI(TD, TA));
cannam@95 103 ST(&(x[WS(vs, 3) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
cannam@95 104 ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
cannam@95 105 }
cannam@95 106 Tb = BYTW(&(W[TWVL * 2]), VSUB(T9, Ta));
cannam@95 107 Tm = BYTW(&(W[TWVL * 2]), VSUB(Tk, Tl));
cannam@95 108 Tx = BYTW(&(W[TWVL * 2]), VSUB(Tv, Tw));
cannam@95 109 ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 1)]));
cannam@95 110 TI = BYTW(&(W[TWVL * 2]), VSUB(TG, TH));
cannam@95 111 ST(&(x[WS(vs, 1) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
cannam@95 112 }
cannam@95 113 }
cannam@95 114 ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)]));
cannam@95 115 ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
cannam@95 116 ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)]));
cannam@95 117 ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
cannam@95 118 }
cannam@95 119 }
cannam@95 120 VLEAVE();
cannam@95 121 }
cannam@95 122
cannam@95 123 static const tw_instr twinstr[] = {
cannam@95 124 VTW(0, 1),
cannam@95 125 VTW(0, 2),
cannam@95 126 VTW(0, 3),
cannam@95 127 {TW_NEXT, VL, 0}
cannam@95 128 };
cannam@95 129
cannam@95 130 static const ct_desc desc = { 4, XSIMD_STRING("q1bv_4"), twinstr, &GENUS, {36, 24, 8, 0}, 0, 0, 0 };
cannam@95 131
cannam@95 132 void XSIMD(codelet_q1bv_4) (planner *p) {
cannam@95 133 X(kdft_difsq_register) (p, q1bv_4, &desc);
cannam@95 134 }
cannam@95 135 #else /* HAVE_FMA */
cannam@95 136
cannam@95 137 /* Generated by: ../../../genfft/gen_twidsq_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1bv_4 -include q1b.h -sign 1 */
cannam@95 138
cannam@95 139 /*
cannam@95 140 * This function contains 44 FP additions, 24 FP multiplications,
cannam@95 141 * (or, 44 additions, 24 multiplications, 0 fused multiply/add),
cannam@95 142 * 22 stack variables, 0 constants, and 32 memory accesses
cannam@95 143 */
cannam@95 144 #include "q1b.h"
cannam@95 145
cannam@95 146 static void q1bv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
cannam@95 147 {
cannam@95 148 {
cannam@95 149 INT m;
cannam@95 150 R *x;
cannam@95 151 x = ii;
cannam@95 152 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) {
cannam@95 153 V T3, T9, TA, TG, TD, TH, T6, Ta, Te, Tk, Tp, Tv, Ts, Tw, Th;
cannam@95 154 V Tl;
cannam@95 155 {
cannam@95 156 V T1, T2, Ty, Tz;
cannam@95 157 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@95 158 T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@95 159 T3 = VSUB(T1, T2);
cannam@95 160 T9 = VADD(T1, T2);
cannam@95 161 Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
cannam@95 162 Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
cannam@95 163 TA = VSUB(Ty, Tz);
cannam@95 164 TG = VADD(Ty, Tz);
cannam@95 165 }
cannam@95 166 {
cannam@95 167 V TB, TC, T4, T5;
cannam@95 168 TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
cannam@95 169 TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
cannam@95 170 TD = VBYI(VSUB(TB, TC));
cannam@95 171 TH = VADD(TB, TC);
cannam@95 172 T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@95 173 T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@95 174 T6 = VBYI(VSUB(T4, T5));
cannam@95 175 Ta = VADD(T4, T5);
cannam@95 176 }
cannam@95 177 {
cannam@95 178 V Tc, Td, Tn, To;
cannam@95 179 Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
cannam@95 180 Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
cannam@95 181 Te = VSUB(Tc, Td);
cannam@95 182 Tk = VADD(Tc, Td);
cannam@95 183 Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
cannam@95 184 To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
cannam@95 185 Tp = VSUB(Tn, To);
cannam@95 186 Tv = VADD(Tn, To);
cannam@95 187 }
cannam@95 188 {
cannam@95 189 V Tq, Tr, Tf, Tg;
cannam@95 190 Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
cannam@95 191 Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
cannam@95 192 Ts = VBYI(VSUB(Tq, Tr));
cannam@95 193 Tw = VADD(Tq, Tr);
cannam@95 194 Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
cannam@95 195 Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
cannam@95 196 Th = VBYI(VSUB(Tf, Tg));
cannam@95 197 Tl = VADD(Tf, Tg);
cannam@95 198 }
cannam@95 199 ST(&(x[0]), VADD(T9, Ta), ms, &(x[0]));
cannam@95 200 ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)]));
cannam@95 201 ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0]));
cannam@95 202 ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)]));
cannam@95 203 {
cannam@95 204 V T7, Ti, Tt, TE;
cannam@95 205 T7 = BYTW(&(W[TWVL * 4]), VSUB(T3, T6));
cannam@95 206 ST(&(x[WS(vs, 3)]), T7, ms, &(x[WS(vs, 3)]));
cannam@95 207 Ti = BYTW(&(W[TWVL * 4]), VSUB(Te, Th));
cannam@95 208 ST(&(x[WS(vs, 3) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
cannam@95 209 Tt = BYTW(&(W[TWVL * 4]), VSUB(Tp, Ts));
cannam@95 210 ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 3)]));
cannam@95 211 TE = BYTW(&(W[TWVL * 4]), VSUB(TA, TD));
cannam@95 212 ST(&(x[WS(vs, 3) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
cannam@95 213 }
cannam@95 214 {
cannam@95 215 V T8, Tj, Tu, TF;
cannam@95 216 T8 = BYTW(&(W[0]), VADD(T3, T6));
cannam@95 217 ST(&(x[WS(vs, 1)]), T8, ms, &(x[WS(vs, 1)]));
cannam@95 218 Tj = BYTW(&(W[0]), VADD(Te, Th));
cannam@95 219 ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
cannam@95 220 Tu = BYTW(&(W[0]), VADD(Tp, Ts));
cannam@95 221 ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 1)]));
cannam@95 222 TF = BYTW(&(W[0]), VADD(TA, TD));
cannam@95 223 ST(&(x[WS(vs, 1) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
cannam@95 224 }
cannam@95 225 {
cannam@95 226 V Tb, Tm, Tx, TI;
cannam@95 227 Tb = BYTW(&(W[TWVL * 2]), VSUB(T9, Ta));
cannam@95 228 ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)]));
cannam@95 229 Tm = BYTW(&(W[TWVL * 2]), VSUB(Tk, Tl));
cannam@95 230 ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
cannam@95 231 Tx = BYTW(&(W[TWVL * 2]), VSUB(Tv, Tw));
cannam@95 232 ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)]));
cannam@95 233 TI = BYTW(&(W[TWVL * 2]), VSUB(TG, TH));
cannam@95 234 ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
cannam@95 235 }
cannam@95 236 }
cannam@95 237 }
cannam@95 238 VLEAVE();
cannam@95 239 }
cannam@95 240
cannam@95 241 static const tw_instr twinstr[] = {
cannam@95 242 VTW(0, 1),
cannam@95 243 VTW(0, 2),
cannam@95 244 VTW(0, 3),
cannam@95 245 {TW_NEXT, VL, 0}
cannam@95 246 };
cannam@95 247
cannam@95 248 static const ct_desc desc = { 4, XSIMD_STRING("q1bv_4"), twinstr, &GENUS, {44, 24, 0, 0}, 0, 0, 0 };
cannam@95 249
cannam@95 250 void XSIMD(codelet_q1bv_4) (planner *p) {
cannam@95 251 X(kdft_difsq_register) (p, q1bv_4, &desc);
cannam@95 252 }
cannam@95 253 #endif /* HAVE_FMA */