annotate osx/include/capnp/message.h @ 139:413e081fcc6f

Rebuild MAD with 64-bit FPM
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 30 Nov 2016 20:59:17 +0000
parents 41e769c91eca
children 0994c39f1e94
rev   line source
cannam@134 1 // Copyright (c) 2013-2016 Sandstorm Development Group, Inc. and contributors
cannam@134 2 // Licensed under the MIT License:
cannam@134 3 //
cannam@134 4 // Permission is hereby granted, free of charge, to any person obtaining a copy
cannam@134 5 // of this software and associated documentation files (the "Software"), to deal
cannam@134 6 // in the Software without restriction, including without limitation the rights
cannam@134 7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
cannam@134 8 // copies of the Software, and to permit persons to whom the Software is
cannam@134 9 // furnished to do so, subject to the following conditions:
cannam@134 10 //
cannam@134 11 // The above copyright notice and this permission notice shall be included in
cannam@134 12 // all copies or substantial portions of the Software.
cannam@134 13 //
cannam@134 14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
cannam@134 15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
cannam@134 16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
cannam@134 17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
cannam@134 18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
cannam@134 19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
cannam@134 20 // THE SOFTWARE.
cannam@134 21
cannam@134 22 #include <kj/common.h>
cannam@134 23 #include <kj/memory.h>
cannam@134 24 #include <kj/mutex.h>
cannam@134 25 #include <kj/debug.h>
cannam@134 26 #include "common.h"
cannam@134 27 #include "layout.h"
cannam@134 28 #include "any.h"
cannam@134 29
cannam@134 30 #ifndef CAPNP_MESSAGE_H_
cannam@134 31 #define CAPNP_MESSAGE_H_
cannam@134 32
cannam@134 33 #if defined(__GNUC__) && !defined(CAPNP_HEADER_WARNINGS)
cannam@134 34 #pragma GCC system_header
cannam@134 35 #endif
cannam@134 36
cannam@134 37 namespace capnp {
cannam@134 38
cannam@134 39 namespace _ { // private
cannam@134 40 class ReaderArena;
cannam@134 41 class BuilderArena;
cannam@134 42 }
cannam@134 43
cannam@134 44 class StructSchema;
cannam@134 45 class Orphanage;
cannam@134 46 template <typename T>
cannam@134 47 class Orphan;
cannam@134 48
cannam@134 49 // =======================================================================================
cannam@134 50
cannam@134 51 struct ReaderOptions {
cannam@134 52 // Options controlling how data is read.
cannam@134 53
cannam@134 54 uint64_t traversalLimitInWords = 8 * 1024 * 1024;
cannam@134 55 // Limits how many total words of data are allowed to be traversed. Traversal is counted when
cannam@134 56 // a new struct or list builder is obtained, e.g. from a get() accessor. This means that calling
cannam@134 57 // the getter for the same sub-struct multiple times will cause it to be double-counted. Once
cannam@134 58 // the traversal limit is reached, an error will be reported.
cannam@134 59 //
cannam@134 60 // This limit exists for security reasons. It is possible for an attacker to construct a message
cannam@134 61 // in which multiple pointers point at the same location. This is technically invalid, but hard
cannam@134 62 // to detect. Using such a message, an attacker could cause a message which is small on the wire
cannam@134 63 // to appear much larger when actually traversed, possibly exhausting server resources leading to
cannam@134 64 // denial-of-service.
cannam@134 65 //
cannam@134 66 // It makes sense to set a traversal limit that is much larger than the underlying message.
cannam@134 67 // Together with sensible coding practices (e.g. trying to avoid calling sub-object getters
cannam@134 68 // multiple times, which is expensive anyway), this should provide adequate protection without
cannam@134 69 // inconvenience.
cannam@134 70 //
cannam@134 71 // The default limit is 64 MiB. This may or may not be a sensible number for any given use case,
cannam@134 72 // but probably at least prevents easy exploitation while also avoiding causing problems in most
cannam@134 73 // typical cases.
cannam@134 74
cannam@134 75 int nestingLimit = 64;
cannam@134 76 // Limits how deeply-nested a message structure can be, e.g. structs containing other structs or
cannam@134 77 // lists of structs.
cannam@134 78 //
cannam@134 79 // Like the traversal limit, this limit exists for security reasons. Since it is common to use
cannam@134 80 // recursive code to traverse recursive data structures, an attacker could easily cause a stack
cannam@134 81 // overflow by sending a very-deeply-nested (or even cyclic) message, without the message even
cannam@134 82 // being very large. The default limit of 64 is probably low enough to prevent any chance of
cannam@134 83 // stack overflow, yet high enough that it is never a problem in practice.
cannam@134 84 };
cannam@134 85
cannam@134 86 class MessageReader {
cannam@134 87 // Abstract interface for an object used to read a Cap'n Proto message. Subclasses of
cannam@134 88 // MessageReader are responsible for reading the raw, flat message content. Callers should
cannam@134 89 // usually call `messageReader.getRoot<MyStructType>()` to get a `MyStructType::Reader`
cannam@134 90 // representing the root of the message, then use that to traverse the message content.
cannam@134 91 //
cannam@134 92 // Some common subclasses of `MessageReader` include `SegmentArrayMessageReader`, whose
cannam@134 93 // constructor accepts pointers to the raw data, and `StreamFdMessageReader` (from
cannam@134 94 // `serialize.h`), which reads the message from a file descriptor. One might implement other
cannam@134 95 // subclasses to handle things like reading from shared memory segments, mmap()ed files, etc.
cannam@134 96
cannam@134 97 public:
cannam@134 98 MessageReader(ReaderOptions options);
cannam@134 99 // It is suggested that subclasses take ReaderOptions as a constructor parameter, but give it a
cannam@134 100 // default value of "ReaderOptions()". The base class constructor doesn't have a default value
cannam@134 101 // in order to remind subclasses that they really need to give the user a way to provide this.
cannam@134 102
cannam@134 103 virtual ~MessageReader() noexcept(false);
cannam@134 104
cannam@134 105 virtual kj::ArrayPtr<const word> getSegment(uint id) = 0;
cannam@134 106 // Gets the segment with the given ID, or returns null if no such segment exists. This method
cannam@134 107 // will be called at most once for each segment ID.
cannam@134 108
cannam@134 109 inline const ReaderOptions& getOptions();
cannam@134 110 // Get the options passed to the constructor.
cannam@134 111
cannam@134 112 template <typename RootType>
cannam@134 113 typename RootType::Reader getRoot();
cannam@134 114 // Get the root struct of the message, interpreting it as the given struct type.
cannam@134 115
cannam@134 116 template <typename RootType, typename SchemaType>
cannam@134 117 typename RootType::Reader getRoot(SchemaType schema);
cannam@134 118 // Dynamically interpret the root struct of the message using the given schema (a StructSchema).
cannam@134 119 // RootType in this case must be DynamicStruct, and you must #include <capnp/dynamic.h> to
cannam@134 120 // use this.
cannam@134 121
cannam@134 122 bool isCanonical();
cannam@134 123 // Returns whether the message encoded in the reader is in canonical form.
cannam@134 124
cannam@134 125 private:
cannam@134 126 ReaderOptions options;
cannam@134 127
cannam@134 128 // Space in which we can construct a ReaderArena. We don't use ReaderArena directly here
cannam@134 129 // because we don't want clients to have to #include arena.h, which itself includes a bunch of
cannam@134 130 // big STL headers. We don't use a pointer to a ReaderArena because that would require an
cannam@134 131 // extra malloc on every message which could be expensive when processing small messages.
cannam@134 132 void* arenaSpace[15 + sizeof(kj::MutexGuarded<void*>) / sizeof(void*)];
cannam@134 133 bool allocatedArena;
cannam@134 134
cannam@134 135 _::ReaderArena* arena() { return reinterpret_cast<_::ReaderArena*>(arenaSpace); }
cannam@134 136 AnyPointer::Reader getRootInternal();
cannam@134 137 };
cannam@134 138
cannam@134 139 class MessageBuilder {
cannam@134 140 // Abstract interface for an object used to allocate and build a message. Subclasses of
cannam@134 141 // MessageBuilder are responsible for allocating the space in which the message will be written.
cannam@134 142 // The most common subclass is `MallocMessageBuilder`, but other subclasses may be used to do
cannam@134 143 // tricky things like allocate messages in shared memory or mmap()ed files.
cannam@134 144 //
cannam@134 145 // Creating a new message ususually means allocating a new MessageBuilder (ideally on the stack)
cannam@134 146 // and then calling `messageBuilder.initRoot<MyStructType>()` to get a `MyStructType::Builder`.
cannam@134 147 // That, in turn, can be used to fill in the message content. When done, you can call
cannam@134 148 // `messageBuilder.getSegmentsForOutput()` to get a list of flat data arrays containing the
cannam@134 149 // message.
cannam@134 150
cannam@134 151 public:
cannam@134 152 MessageBuilder();
cannam@134 153 virtual ~MessageBuilder() noexcept(false);
cannam@134 154 KJ_DISALLOW_COPY(MessageBuilder);
cannam@134 155
cannam@134 156 struct SegmentInit {
cannam@134 157 kj::ArrayPtr<word> space;
cannam@134 158
cannam@134 159 size_t wordsUsed;
cannam@134 160 // Number of words in `space` which are used; the rest are free space in which additional
cannam@134 161 // objects may be allocated.
cannam@134 162 };
cannam@134 163
cannam@134 164 explicit MessageBuilder(kj::ArrayPtr<SegmentInit> segments);
cannam@134 165 // Create a MessageBuilder backed by existing memory. This is an advanced interface that most
cannam@134 166 // people should not use. THIS METHOD IS INSECURE; see below.
cannam@134 167 //
cannam@134 168 // This allows a MessageBuilder to be constructed to modify an in-memory message without first
cannam@134 169 // making a copy of the content. This is especially useful in conjunction with mmap().
cannam@134 170 //
cannam@134 171 // The contents of each segment must outlive the MessageBuilder, but the SegmentInit array itself
cannam@134 172 // only need outlive the constructor.
cannam@134 173 //
cannam@134 174 // SECURITY: Do not use this in conjunction with untrusted data. This constructor assumes that
cannam@134 175 // the input message is valid. This constructor is designed to be used with data you control,
cannam@134 176 // e.g. an mmap'd file which is owned and accessed by only one program. When reading data you
cannam@134 177 // do not trust, you *must* load it into a Reader and then copy into a Builder as a means of
cannam@134 178 // validating the content.
cannam@134 179 //
cannam@134 180 // WARNING: It is NOT safe to initialize a MessageBuilder in this way from memory that is
cannam@134 181 // currently in use by another MessageBuilder or MessageReader. Other readers/builders will
cannam@134 182 // not observe changes to the segment sizes nor newly-allocated segments caused by allocating
cannam@134 183 // new objects in this message.
cannam@134 184
cannam@134 185 virtual kj::ArrayPtr<word> allocateSegment(uint minimumSize) = 0;
cannam@134 186 // Allocates an array of at least the given number of words, throwing an exception or crashing if
cannam@134 187 // this is not possible. It is expected that this method will usually return more space than
cannam@134 188 // requested, and the caller should use that extra space as much as possible before allocating
cannam@134 189 // more. The returned space remains valid at least until the MessageBuilder is destroyed.
cannam@134 190 //
cannam@134 191 // Cap'n Proto will only call this once at a time, so the subclass need not worry about
cannam@134 192 // thread-safety.
cannam@134 193
cannam@134 194 template <typename RootType>
cannam@134 195 typename RootType::Builder initRoot();
cannam@134 196 // Initialize the root struct of the message as the given struct type.
cannam@134 197
cannam@134 198 template <typename Reader>
cannam@134 199 void setRoot(Reader&& value);
cannam@134 200 // Set the root struct to a deep copy of the given struct.
cannam@134 201
cannam@134 202 template <typename RootType>
cannam@134 203 typename RootType::Builder getRoot();
cannam@134 204 // Get the root struct of the message, interpreting it as the given struct type.
cannam@134 205
cannam@134 206 template <typename RootType, typename SchemaType>
cannam@134 207 typename RootType::Builder getRoot(SchemaType schema);
cannam@134 208 // Dynamically interpret the root struct of the message using the given schema (a StructSchema).
cannam@134 209 // RootType in this case must be DynamicStruct, and you must #include <capnp/dynamic.h> to
cannam@134 210 // use this.
cannam@134 211
cannam@134 212 template <typename RootType, typename SchemaType>
cannam@134 213 typename RootType::Builder initRoot(SchemaType schema);
cannam@134 214 // Dynamically init the root struct of the message using the given schema (a StructSchema).
cannam@134 215 // RootType in this case must be DynamicStruct, and you must #include <capnp/dynamic.h> to
cannam@134 216 // use this.
cannam@134 217
cannam@134 218 template <typename T>
cannam@134 219 void adoptRoot(Orphan<T>&& orphan);
cannam@134 220 // Like setRoot() but adopts the orphan without copying.
cannam@134 221
cannam@134 222 kj::ArrayPtr<const kj::ArrayPtr<const word>> getSegmentsForOutput();
cannam@134 223 // Get the raw data that makes up the message.
cannam@134 224
cannam@134 225 Orphanage getOrphanage();
cannam@134 226
cannam@134 227 bool isCanonical();
cannam@134 228 // Check whether the message builder is in canonical form
cannam@134 229
cannam@134 230 private:
cannam@134 231 void* arenaSpace[22];
cannam@134 232 // Space in which we can construct a BuilderArena. We don't use BuilderArena directly here
cannam@134 233 // because we don't want clients to have to #include arena.h, which itself includes a bunch of
cannam@134 234 // big STL headers. We don't use a pointer to a BuilderArena because that would require an
cannam@134 235 // extra malloc on every message which could be expensive when processing small messages.
cannam@134 236
cannam@134 237 bool allocatedArena = false;
cannam@134 238 // We have to initialize the arena lazily because when we do so we want to allocate the root
cannam@134 239 // pointer immediately, and this will allocate a segment, which requires a virtual function
cannam@134 240 // call on the MessageBuilder. We can't do such a call in the constructor since the subclass
cannam@134 241 // isn't constructed yet. This is kind of annoying because it means that getOrphanage() is
cannam@134 242 // not thread-safe, but that shouldn't be a huge deal...
cannam@134 243
cannam@134 244 _::BuilderArena* arena() { return reinterpret_cast<_::BuilderArena*>(arenaSpace); }
cannam@134 245 _::SegmentBuilder* getRootSegment();
cannam@134 246 AnyPointer::Builder getRootInternal();
cannam@134 247 };
cannam@134 248
cannam@134 249 template <typename RootType>
cannam@134 250 typename RootType::Reader readMessageUnchecked(const word* data);
cannam@134 251 // IF THE INPUT IS INVALID, THIS MAY CRASH, CORRUPT MEMORY, CREATE A SECURITY HOLE IN YOUR APP,
cannam@134 252 // MURDER YOUR FIRST-BORN CHILD, AND/OR BRING ABOUT ETERNAL DAMNATION ON ALL OF HUMANITY. DO NOT
cannam@134 253 // USE UNLESS YOU UNDERSTAND THE CONSEQUENCES.
cannam@134 254 //
cannam@134 255 // Given a pointer to a known-valid message located in a single contiguous memory segment,
cannam@134 256 // returns a reader for that message. No bounds-checking will be done while traversing this
cannam@134 257 // message. Use this only if you have already verified that all pointers are valid and in-bounds,
cannam@134 258 // and there are no far pointers in the message.
cannam@134 259 //
cannam@134 260 // To create a message that can be passed to this function, build a message using a MallocAllocator
cannam@134 261 // whose preferred segment size is larger than the message size. This guarantees that the message
cannam@134 262 // will be allocated as a single segment, meaning getSegmentsForOutput() returns a single word
cannam@134 263 // array. That word array is your message; you may pass a pointer to its first word into
cannam@134 264 // readMessageUnchecked() to read the message.
cannam@134 265 //
cannam@134 266 // This can be particularly handy for embedding messages in generated code: you can
cannam@134 267 // embed the raw bytes (using AlignedData) then make a Reader for it using this. This is the way
cannam@134 268 // default values are embedded in code generated by the Cap'n Proto compiler. E.g., if you have
cannam@134 269 // a message MyMessage, you can read its default value like so:
cannam@134 270 // MyMessage::Reader reader = Message<MyMessage>::readMessageUnchecked(MyMessage::DEFAULT.words);
cannam@134 271 //
cannam@134 272 // To sanitize a message from an untrusted source such that it can be safely passed to
cannam@134 273 // readMessageUnchecked(), use copyToUnchecked().
cannam@134 274
cannam@134 275 template <typename Reader>
cannam@134 276 void copyToUnchecked(Reader&& reader, kj::ArrayPtr<word> uncheckedBuffer);
cannam@134 277 // Copy the content of the given reader into the given buffer, such that it can safely be passed to
cannam@134 278 // readMessageUnchecked(). The buffer's size must be exactly reader.totalSizeInWords() + 1,
cannam@134 279 // otherwise an exception will be thrown. The buffer must be zero'd before calling.
cannam@134 280
cannam@134 281 template <typename RootType>
cannam@134 282 typename RootType::Reader readDataStruct(kj::ArrayPtr<const word> data);
cannam@134 283 // Interprets the given data as a single, data-only struct. Only primitive fields (booleans,
cannam@134 284 // numbers, and enums) will be readable; all pointers will be null. This is useful if you want
cannam@134 285 // to use Cap'n Proto as a language/platform-neutral way to pack some bits.
cannam@134 286 //
cannam@134 287 // The input is a word array rather than a byte array to enforce alignment. If you have a byte
cannam@134 288 // array which you know is word-aligned (or if your platform supports unaligned reads and you don't
cannam@134 289 // mind the performance penalty), then you can use `reinterpret_cast` to convert a byte array into
cannam@134 290 // a word array:
cannam@134 291 //
cannam@134 292 // kj::arrayPtr(reinterpret_cast<const word*>(bytes.begin()),
cannam@134 293 // reinterpret_cast<const word*>(bytes.end()))
cannam@134 294
cannam@134 295 template <typename BuilderType>
cannam@134 296 typename kj::ArrayPtr<const word> writeDataStruct(BuilderType builder);
cannam@134 297 // Given a struct builder, get the underlying data section as a word array, suitable for passing
cannam@134 298 // to `readDataStruct()`.
cannam@134 299 //
cannam@134 300 // Note that you may call `.toBytes()` on the returned value to convert to `ArrayPtr<const byte>`.
cannam@134 301
cannam@134 302 template <typename Type>
cannam@134 303 static typename Type::Reader defaultValue();
cannam@134 304 // Get a default instance of the given struct or list type.
cannam@134 305 //
cannam@134 306 // TODO(cleanup): Find a better home for this function?
cannam@134 307
cannam@134 308 // =======================================================================================
cannam@134 309
cannam@134 310 class SegmentArrayMessageReader: public MessageReader {
cannam@134 311 // A simple MessageReader that reads from an array of word arrays representing all segments.
cannam@134 312 // In particular you can read directly from the output of MessageBuilder::getSegmentsForOutput()
cannam@134 313 // (although it would probably make more sense to call builder.getRoot().asReader() in that case).
cannam@134 314
cannam@134 315 public:
cannam@134 316 SegmentArrayMessageReader(kj::ArrayPtr<const kj::ArrayPtr<const word>> segments,
cannam@134 317 ReaderOptions options = ReaderOptions());
cannam@134 318 // Creates a message pointing at the given segment array, without taking ownership of the
cannam@134 319 // segments. All arrays passed in must remain valid until the MessageReader is destroyed.
cannam@134 320
cannam@134 321 KJ_DISALLOW_COPY(SegmentArrayMessageReader);
cannam@134 322 ~SegmentArrayMessageReader() noexcept(false);
cannam@134 323
cannam@134 324 virtual kj::ArrayPtr<const word> getSegment(uint id) override;
cannam@134 325
cannam@134 326 private:
cannam@134 327 kj::ArrayPtr<const kj::ArrayPtr<const word>> segments;
cannam@134 328 };
cannam@134 329
cannam@134 330 enum class AllocationStrategy: uint8_t {
cannam@134 331 FIXED_SIZE,
cannam@134 332 // The builder will prefer to allocate the same amount of space for each segment with no
cannam@134 333 // heuristic growth. It will still allocate larger segments when the preferred size is too small
cannam@134 334 // for some single object. This mode is generally not recommended, but can be particularly useful
cannam@134 335 // for testing in order to force a message to allocate a predictable number of segments. Note
cannam@134 336 // that you can force every single object in the message to be located in a separate segment by
cannam@134 337 // using this mode with firstSegmentWords = 0.
cannam@134 338
cannam@134 339 GROW_HEURISTICALLY
cannam@134 340 // The builder will heuristically decide how much space to allocate for each segment. Each
cannam@134 341 // allocated segment will be progressively larger than the previous segments on the assumption
cannam@134 342 // that message sizes are exponentially distributed. The total number of segments that will be
cannam@134 343 // allocated for a message of size n is O(log n).
cannam@134 344 };
cannam@134 345
cannam@134 346 constexpr uint SUGGESTED_FIRST_SEGMENT_WORDS = 1024;
cannam@134 347 constexpr AllocationStrategy SUGGESTED_ALLOCATION_STRATEGY = AllocationStrategy::GROW_HEURISTICALLY;
cannam@134 348
cannam@134 349 class MallocMessageBuilder: public MessageBuilder {
cannam@134 350 // A simple MessageBuilder that uses malloc() (actually, calloc()) to allocate segments. This
cannam@134 351 // implementation should be reasonable for any case that doesn't require writing the message to
cannam@134 352 // a specific location in memory.
cannam@134 353
cannam@134 354 public:
cannam@134 355 explicit MallocMessageBuilder(uint firstSegmentWords = SUGGESTED_FIRST_SEGMENT_WORDS,
cannam@134 356 AllocationStrategy allocationStrategy = SUGGESTED_ALLOCATION_STRATEGY);
cannam@134 357 // Creates a BuilderContext which allocates at least the given number of words for the first
cannam@134 358 // segment, and then uses the given strategy to decide how much to allocate for subsequent
cannam@134 359 // segments. When choosing a value for firstSegmentWords, consider that:
cannam@134 360 // 1) Reading and writing messages gets slower when multiple segments are involved, so it's good
cannam@134 361 // if most messages fit in a single segment.
cannam@134 362 // 2) Unused bytes will not be written to the wire, so generally it is not a big deal to allocate
cannam@134 363 // more space than you need. It only becomes problematic if you are allocating many messages
cannam@134 364 // in parallel and thus use lots of memory, or if you allocate so much extra space that just
cannam@134 365 // zeroing it out becomes a bottleneck.
cannam@134 366 // The defaults have been chosen to be reasonable for most people, so don't change them unless you
cannam@134 367 // have reason to believe you need to.
cannam@134 368
cannam@134 369 explicit MallocMessageBuilder(kj::ArrayPtr<word> firstSegment,
cannam@134 370 AllocationStrategy allocationStrategy = SUGGESTED_ALLOCATION_STRATEGY);
cannam@134 371 // This version always returns the given array for the first segment, and then proceeds with the
cannam@134 372 // allocation strategy. This is useful for optimization when building lots of small messages in
cannam@134 373 // a tight loop: you can reuse the space for the first segment.
cannam@134 374 //
cannam@134 375 // firstSegment MUST be zero-initialized. MallocMessageBuilder's destructor will write new zeros
cannam@134 376 // over any space that was used so that it can be reused.
cannam@134 377
cannam@134 378 KJ_DISALLOW_COPY(MallocMessageBuilder);
cannam@134 379 virtual ~MallocMessageBuilder() noexcept(false);
cannam@134 380
cannam@134 381 virtual kj::ArrayPtr<word> allocateSegment(uint minimumSize) override;
cannam@134 382
cannam@134 383 private:
cannam@134 384 uint nextSize;
cannam@134 385 AllocationStrategy allocationStrategy;
cannam@134 386
cannam@134 387 bool ownFirstSegment;
cannam@134 388 bool returnedFirstSegment;
cannam@134 389
cannam@134 390 void* firstSegment;
cannam@134 391
cannam@134 392 struct MoreSegments;
cannam@134 393 kj::Maybe<kj::Own<MoreSegments>> moreSegments;
cannam@134 394 };
cannam@134 395
cannam@134 396 class FlatMessageBuilder: public MessageBuilder {
cannam@134 397 // THIS IS NOT THE CLASS YOU'RE LOOKING FOR.
cannam@134 398 //
cannam@134 399 // If you want to write a message into already-existing scratch space, use `MallocMessageBuilder`
cannam@134 400 // and pass the scratch space to its constructor. It will then only fall back to malloc() if
cannam@134 401 // the scratch space is not large enough.
cannam@134 402 //
cannam@134 403 // Do NOT use this class unless you really know what you're doing. This class is problematic
cannam@134 404 // because it requires advance knowledge of the size of your message, which is usually impossible
cannam@134 405 // to determine without actually building the message. The class was created primarily to
cannam@134 406 // implement `copyToUnchecked()`, which itself exists only to support other internal parts of
cannam@134 407 // the Cap'n Proto implementation.
cannam@134 408
cannam@134 409 public:
cannam@134 410 explicit FlatMessageBuilder(kj::ArrayPtr<word> array);
cannam@134 411 KJ_DISALLOW_COPY(FlatMessageBuilder);
cannam@134 412 virtual ~FlatMessageBuilder() noexcept(false);
cannam@134 413
cannam@134 414 void requireFilled();
cannam@134 415 // Throws an exception if the flat array is not exactly full.
cannam@134 416
cannam@134 417 virtual kj::ArrayPtr<word> allocateSegment(uint minimumSize) override;
cannam@134 418
cannam@134 419 private:
cannam@134 420 kj::ArrayPtr<word> array;
cannam@134 421 bool allocated;
cannam@134 422 };
cannam@134 423
cannam@134 424 // =======================================================================================
cannam@134 425 // implementation details
cannam@134 426
cannam@134 427 inline const ReaderOptions& MessageReader::getOptions() {
cannam@134 428 return options;
cannam@134 429 }
cannam@134 430
cannam@134 431 template <typename RootType>
cannam@134 432 inline typename RootType::Reader MessageReader::getRoot() {
cannam@134 433 return getRootInternal().getAs<RootType>();
cannam@134 434 }
cannam@134 435
cannam@134 436 template <typename RootType>
cannam@134 437 inline typename RootType::Builder MessageBuilder::initRoot() {
cannam@134 438 return getRootInternal().initAs<RootType>();
cannam@134 439 }
cannam@134 440
cannam@134 441 template <typename Reader>
cannam@134 442 inline void MessageBuilder::setRoot(Reader&& value) {
cannam@134 443 getRootInternal().setAs<FromReader<Reader>>(value);
cannam@134 444 }
cannam@134 445
cannam@134 446 template <typename RootType>
cannam@134 447 inline typename RootType::Builder MessageBuilder::getRoot() {
cannam@134 448 return getRootInternal().getAs<RootType>();
cannam@134 449 }
cannam@134 450
cannam@134 451 template <typename T>
cannam@134 452 void MessageBuilder::adoptRoot(Orphan<T>&& orphan) {
cannam@134 453 return getRootInternal().adopt(kj::mv(orphan));
cannam@134 454 }
cannam@134 455
cannam@134 456 template <typename RootType, typename SchemaType>
cannam@134 457 typename RootType::Reader MessageReader::getRoot(SchemaType schema) {
cannam@134 458 return getRootInternal().getAs<RootType>(schema);
cannam@134 459 }
cannam@134 460
cannam@134 461 template <typename RootType, typename SchemaType>
cannam@134 462 typename RootType::Builder MessageBuilder::getRoot(SchemaType schema) {
cannam@134 463 return getRootInternal().getAs<RootType>(schema);
cannam@134 464 }
cannam@134 465
cannam@134 466 template <typename RootType, typename SchemaType>
cannam@134 467 typename RootType::Builder MessageBuilder::initRoot(SchemaType schema) {
cannam@134 468 return getRootInternal().initAs<RootType>(schema);
cannam@134 469 }
cannam@134 470
cannam@134 471 template <typename RootType>
cannam@134 472 typename RootType::Reader readMessageUnchecked(const word* data) {
cannam@134 473 return AnyPointer::Reader(_::PointerReader::getRootUnchecked(data)).getAs<RootType>();
cannam@134 474 }
cannam@134 475
cannam@134 476 template <typename Reader>
cannam@134 477 void copyToUnchecked(Reader&& reader, kj::ArrayPtr<word> uncheckedBuffer) {
cannam@134 478 FlatMessageBuilder builder(uncheckedBuffer);
cannam@134 479 builder.setRoot(kj::fwd<Reader>(reader));
cannam@134 480 builder.requireFilled();
cannam@134 481 }
cannam@134 482
cannam@134 483 template <typename RootType>
cannam@134 484 typename RootType::Reader readDataStruct(kj::ArrayPtr<const word> data) {
cannam@134 485 return typename RootType::Reader(_::StructReader(data));
cannam@134 486 }
cannam@134 487
cannam@134 488 template <typename BuilderType>
cannam@134 489 typename kj::ArrayPtr<const word> writeDataStruct(BuilderType builder) {
cannam@134 490 auto bytes = _::PointerHelpers<FromBuilder<BuilderType>>::getInternalBuilder(kj::mv(builder))
cannam@134 491 .getDataSectionAsBlob();
cannam@134 492 return kj::arrayPtr(reinterpret_cast<word*>(bytes.begin()),
cannam@134 493 reinterpret_cast<word*>(bytes.end()));
cannam@134 494 }
cannam@134 495
cannam@134 496 template <typename Type>
cannam@134 497 static typename Type::Reader defaultValue() {
cannam@134 498 return typename Type::Reader(_::StructReader());
cannam@134 499 }
cannam@134 500
cannam@134 501 template <typename T>
cannam@134 502 kj::Array<word> canonicalize(T&& reader) {
cannam@134 503 return _::PointerHelpers<FromReader<T>>::getInternalReader(reader).canonicalize();
cannam@134 504 }
cannam@134 505
cannam@134 506 } // namespace capnp
cannam@134 507
cannam@134 508 #endif // CAPNP_MESSAGE_H_