annotate win64-msvc/include/kj/tuple.h @ 135:38d1c0e7850b

Headers for KJ/Capnp Win32
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 26 Oct 2016 13:18:45 +0100
parents 42a73082be24
children 0f2d93caa50c
rev   line source
cannam@132 1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
cannam@132 2 // Licensed under the MIT License:
cannam@132 3 //
cannam@132 4 // Permission is hereby granted, free of charge, to any person obtaining a copy
cannam@132 5 // of this software and associated documentation files (the "Software"), to deal
cannam@132 6 // in the Software without restriction, including without limitation the rights
cannam@132 7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
cannam@132 8 // copies of the Software, and to permit persons to whom the Software is
cannam@132 9 // furnished to do so, subject to the following conditions:
cannam@132 10 //
cannam@132 11 // The above copyright notice and this permission notice shall be included in
cannam@132 12 // all copies or substantial portions of the Software.
cannam@132 13 //
cannam@132 14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
cannam@132 15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
cannam@132 16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
cannam@132 17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
cannam@132 18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
cannam@132 19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
cannam@132 20 // THE SOFTWARE.
cannam@132 21
cannam@132 22 // This file defines a notion of tuples that is simpler that `std::tuple`. It works as follows:
cannam@132 23 // - `kj::Tuple<A, B, C> is the type of a tuple of an A, a B, and a C.
cannam@132 24 // - `kj::tuple(a, b, c)` returns a tuple containing a, b, and c. If any of these are themselves
cannam@132 25 // tuples, they are flattened, so `tuple(a, tuple(b, c), d)` is equivalent to `tuple(a, b, c, d)`.
cannam@132 26 // - `kj::get<n>(myTuple)` returns the element of `myTuple` at index n.
cannam@132 27 // - `kj::apply(func, ...)` calls func on the following arguments after first expanding any tuples
cannam@132 28 // in the argument list. So `kj::apply(foo, a, tuple(b, c), d)` would call `foo(a, b, c, d)`.
cannam@132 29 //
cannam@132 30 // Note that:
cannam@132 31 // - The type `Tuple<T>` is a synonym for T. This is why `get` and `apply` are not members of the
cannam@132 32 // type.
cannam@132 33 // - It is illegal for an element of `Tuple` to itself be a tuple, as tuples are meant to be
cannam@132 34 // flattened.
cannam@132 35 // - It is illegal for an element of `Tuple` to be a reference, due to problems this would cause
cannam@132 36 // with type inference and `tuple()`.
cannam@132 37
cannam@132 38 #ifndef KJ_TUPLE_H_
cannam@132 39 #define KJ_TUPLE_H_
cannam@132 40
cannam@132 41 #if defined(__GNUC__) && !KJ_HEADER_WARNINGS
cannam@132 42 #pragma GCC system_header
cannam@132 43 #endif
cannam@132 44
cannam@132 45 #include "common.h"
cannam@132 46
cannam@132 47 namespace kj {
cannam@132 48 namespace _ { // private
cannam@132 49
cannam@132 50 template <size_t index, typename... T>
cannam@132 51 struct TypeByIndex_;
cannam@132 52 template <typename First, typename... Rest>
cannam@132 53 struct TypeByIndex_<0, First, Rest...> {
cannam@132 54 typedef First Type;
cannam@132 55 };
cannam@132 56 template <size_t index, typename First, typename... Rest>
cannam@132 57 struct TypeByIndex_<index, First, Rest...>
cannam@132 58 : public TypeByIndex_<index - 1, Rest...> {};
cannam@132 59 template <size_t index>
cannam@132 60 struct TypeByIndex_<index> {
cannam@132 61 static_assert(index != index, "Index out-of-range.");
cannam@132 62 };
cannam@132 63 template <size_t index, typename... T>
cannam@132 64 using TypeByIndex = typename TypeByIndex_<index, T...>::Type;
cannam@132 65 // Chose a particular type out of a list of types, by index.
cannam@132 66
cannam@132 67 template <size_t... s>
cannam@132 68 struct Indexes {};
cannam@132 69 // Dummy helper type that just encapsulates a sequential list of indexes, so that we can match
cannam@132 70 // templates against them and unpack them with '...'.
cannam@132 71
cannam@132 72 template <size_t end, size_t... prefix>
cannam@132 73 struct MakeIndexes_: public MakeIndexes_<end - 1, end - 1, prefix...> {};
cannam@132 74 template <size_t... prefix>
cannam@132 75 struct MakeIndexes_<0, prefix...> {
cannam@132 76 typedef Indexes<prefix...> Type;
cannam@132 77 };
cannam@132 78 template <size_t end>
cannam@132 79 using MakeIndexes = typename MakeIndexes_<end>::Type;
cannam@132 80 // Equivalent to Indexes<0, 1, 2, ..., end>.
cannam@132 81
cannam@132 82 template <typename... T>
cannam@132 83 class Tuple;
cannam@132 84 template <size_t index, typename... U>
cannam@132 85 inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
cannam@132 86 template <size_t index, typename... U>
cannam@132 87 inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
cannam@132 88 template <size_t index, typename... U>
cannam@132 89 inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
cannam@132 90
cannam@132 91 template <uint index, typename T>
cannam@132 92 struct TupleElement {
cannam@132 93 // Encapsulates one element of a tuple. The actual tuple implementation multiply-inherits
cannam@132 94 // from a TupleElement for each element, which is more efficient than a recursive definition.
cannam@132 95
cannam@132 96 T value;
cannam@132 97 TupleElement() = default;
cannam@132 98 constexpr inline TupleElement(const T& value): value(value) {}
cannam@132 99 constexpr inline TupleElement(T&& value): value(kj::mv(value)) {}
cannam@132 100 };
cannam@132 101
cannam@132 102 template <uint index, typename T>
cannam@132 103 struct TupleElement<index, T&> {
cannam@132 104 // If tuples contained references, one of the following would have to be true:
cannam@132 105 // - `auto x = tuple(y, z)` would cause x to be a tuple of references to y and z, which is
cannam@132 106 // probably not what you expected.
cannam@132 107 // - `Tuple<Foo&, Bar&> x = tuple(a, b)` would not work, because `tuple()` returned
cannam@132 108 // Tuple<Foo, Bar>.
cannam@132 109 static_assert(sizeof(T*) == 0, "Sorry, tuples cannot contain references.");
cannam@132 110 };
cannam@132 111
cannam@132 112 template <uint index, typename... T>
cannam@132 113 struct TupleElement<index, Tuple<T...>> {
cannam@132 114 static_assert(sizeof(Tuple<T...>*) == 0,
cannam@132 115 "Tuples cannot contain other tuples -- they should be flattened.");
cannam@132 116 };
cannam@132 117
cannam@132 118 template <typename Indexes, typename... Types>
cannam@132 119 struct TupleImpl;
cannam@132 120
cannam@132 121 template <size_t... indexes, typename... Types>
cannam@132 122 struct TupleImpl<Indexes<indexes...>, Types...>
cannam@132 123 : public TupleElement<indexes, Types>... {
cannam@132 124 // Implementation of Tuple. The only reason we need this rather than rolling this into class
cannam@132 125 // Tuple (below) is so that we can get "indexes" as an unpackable list.
cannam@132 126
cannam@132 127 static_assert(sizeof...(indexes) == sizeof...(Types), "Incorrect use of TupleImpl.");
cannam@132 128
cannam@132 129 template <typename... Params>
cannam@132 130 inline TupleImpl(Params&&... params)
cannam@132 131 : TupleElement<indexes, Types>(kj::fwd<Params>(params))... {
cannam@132 132 // Work around Clang 3.2 bug 16303 where this is not detected. (Unfortunately, Clang sometimes
cannam@132 133 // segfaults instead.)
cannam@132 134 static_assert(sizeof...(params) == sizeof...(indexes),
cannam@132 135 "Wrong number of parameters to Tuple constructor.");
cannam@132 136 }
cannam@132 137
cannam@132 138 template <typename... U>
cannam@132 139 constexpr inline TupleImpl(Tuple<U...>&& other)
cannam@132 140 : TupleElement<indexes, Types>(kj::mv(getImpl<indexes>(other)))... {}
cannam@132 141 template <typename... U>
cannam@132 142 constexpr inline TupleImpl(Tuple<U...>& other)
cannam@132 143 : TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
cannam@132 144 template <typename... U>
cannam@132 145 constexpr inline TupleImpl(const Tuple<U...>& other)
cannam@132 146 : TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
cannam@132 147 };
cannam@132 148
cannam@132 149 struct MakeTupleFunc;
cannam@132 150
cannam@132 151 template <typename... T>
cannam@132 152 class Tuple {
cannam@132 153 // The actual Tuple class (used for tuples of size other than 1).
cannam@132 154
cannam@132 155 public:
cannam@132 156 template <typename... U>
cannam@132 157 constexpr inline Tuple(Tuple<U...>&& other): impl(kj::mv(other)) {}
cannam@132 158 template <typename... U>
cannam@132 159 constexpr inline Tuple(Tuple<U...>& other): impl(other) {}
cannam@132 160 template <typename... U>
cannam@132 161 constexpr inline Tuple(const Tuple<U...>& other): impl(other) {}
cannam@132 162
cannam@132 163 private:
cannam@132 164 template <typename... Params>
cannam@132 165 constexpr Tuple(Params&&... params): impl(kj::fwd<Params>(params)...) {}
cannam@132 166
cannam@132 167 TupleImpl<MakeIndexes<sizeof...(T)>, T...> impl;
cannam@132 168
cannam@132 169 template <size_t index, typename... U>
cannam@132 170 friend inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
cannam@132 171 template <size_t index, typename... U>
cannam@132 172 friend inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
cannam@132 173 template <size_t index, typename... U>
cannam@132 174 friend inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
cannam@132 175 friend struct MakeTupleFunc;
cannam@132 176 };
cannam@132 177
cannam@132 178 template <>
cannam@132 179 class Tuple<> {
cannam@132 180 // Simplified zero-member version of Tuple. In particular this is important to make sure that
cannam@132 181 // Tuple<>() is constexpr.
cannam@132 182 };
cannam@132 183
cannam@132 184 template <typename T>
cannam@132 185 class Tuple<T>;
cannam@132 186 // Single-element tuple should never be used. The public API should ensure this.
cannam@132 187
cannam@132 188 template <size_t index, typename... T>
cannam@132 189 inline TypeByIndex<index, T...>& getImpl(Tuple<T...>& tuple) {
cannam@132 190 // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
cannam@132 191 static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
cannam@132 192 return implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
cannam@132 193 }
cannam@132 194 template <size_t index, typename... T>
cannam@132 195 inline TypeByIndex<index, T...>&& getImpl(Tuple<T...>&& tuple) {
cannam@132 196 // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
cannam@132 197 static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
cannam@132 198 return kj::mv(implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value);
cannam@132 199 }
cannam@132 200 template <size_t index, typename... T>
cannam@132 201 inline const TypeByIndex<index, T...>& getImpl(const Tuple<T...>& tuple) {
cannam@132 202 // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
cannam@132 203 static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
cannam@132 204 return implicitCast<const TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
cannam@132 205 }
cannam@132 206 template <size_t index, typename T>
cannam@132 207 inline T&& getImpl(T&& value) {
cannam@132 208 // Get member of a Tuple by index, e.g. `getImpl<2>(myTuple)`.
cannam@132 209
cannam@132 210 // Non-tuples are equivalent to one-element tuples.
cannam@132 211 static_assert(index == 0, "Tuple element index out-of-bounds.");
cannam@132 212 return kj::fwd<T>(value);
cannam@132 213 }
cannam@132 214
cannam@132 215
cannam@132 216 template <typename Func, typename SoFar, typename... T>
cannam@132 217 struct ExpandAndApplyResult_;
cannam@132 218 // Template which computes the return type of applying Func to T... after flattening tuples.
cannam@132 219 // SoFar starts as Tuple<> and accumulates the flattened parameter types -- so after this template
cannam@132 220 // is recursively expanded, T... is empty and SoFar is a Tuple containing all the parameters.
cannam@132 221
cannam@132 222 template <typename Func, typename First, typename... Rest, typename... T>
cannam@132 223 struct ExpandAndApplyResult_<Func, Tuple<T...>, First, Rest...>
cannam@132 224 : public ExpandAndApplyResult_<Func, Tuple<T..., First>, Rest...> {};
cannam@132 225 template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
cannam@132 226 struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>, Rest...>
cannam@132 227 : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&&..., Rest...> {};
cannam@132 228 template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
cannam@132 229 struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>&, Rest...>
cannam@132 230 : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&..., Rest...> {};
cannam@132 231 template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
cannam@132 232 struct ExpandAndApplyResult_<Func, Tuple<T...>, const Tuple<FirstTypes...>&, Rest...>
cannam@132 233 : public ExpandAndApplyResult_<Func, Tuple<T...>, const FirstTypes&..., Rest...> {};
cannam@132 234 template <typename Func, typename... T>
cannam@132 235 struct ExpandAndApplyResult_<Func, Tuple<T...>> {
cannam@132 236 typedef decltype(instance<Func>()(instance<T&&>()...)) Type;
cannam@132 237 };
cannam@132 238 template <typename Func, typename... T>
cannam@132 239 using ExpandAndApplyResult = typename ExpandAndApplyResult_<Func, Tuple<>, T...>::Type;
cannam@132 240 // Computes the expected return type of `expandAndApply()`.
cannam@132 241
cannam@132 242 template <typename Func>
cannam@132 243 inline auto expandAndApply(Func&& func) -> ExpandAndApplyResult<Func> {
cannam@132 244 return func();
cannam@132 245 }
cannam@132 246
cannam@132 247 template <typename Func, typename First, typename... Rest>
cannam@132 248 struct ExpandAndApplyFunc {
cannam@132 249 Func&& func;
cannam@132 250 First&& first;
cannam@132 251 ExpandAndApplyFunc(Func&& func, First&& first)
cannam@132 252 : func(kj::fwd<Func>(func)), first(kj::fwd<First>(first)) {}
cannam@132 253 template <typename... T>
cannam@132 254 auto operator()(T&&... params)
cannam@132 255 -> decltype(this->func(kj::fwd<First>(first), kj::fwd<T>(params)...)) {
cannam@132 256 return this->func(kj::fwd<First>(first), kj::fwd<T>(params)...);
cannam@132 257 }
cannam@132 258 };
cannam@132 259
cannam@132 260 template <typename Func, typename First, typename... Rest>
cannam@132 261 inline auto expandAndApply(Func&& func, First&& first, Rest&&... rest)
cannam@132 262 -> ExpandAndApplyResult<Func, First, Rest...> {
cannam@132 263
cannam@132 264 return expandAndApply(
cannam@132 265 ExpandAndApplyFunc<Func, First, Rest...>(kj::fwd<Func>(func), kj::fwd<First>(first)),
cannam@132 266 kj::fwd<Rest>(rest)...);
cannam@132 267 }
cannam@132 268
cannam@132 269 template <typename Func, typename... FirstTypes, typename... Rest>
cannam@132 270 inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
cannam@132 271 -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
cannam@132 272 return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
cannam@132 273 kj::fwd<Func>(func), kj::mv(first), kj::fwd<Rest>(rest)...);
cannam@132 274 }
cannam@132 275
cannam@132 276 template <typename Func, typename... FirstTypes, typename... Rest>
cannam@132 277 inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>& first, Rest&&... rest)
cannam@132 278 -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
cannam@132 279 return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
cannam@132 280 kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
cannam@132 281 }
cannam@132 282
cannam@132 283 template <typename Func, typename... FirstTypes, typename... Rest>
cannam@132 284 inline auto expandAndApply(Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
cannam@132 285 -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
cannam@132 286 return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
cannam@132 287 kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
cannam@132 288 }
cannam@132 289
cannam@132 290 template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
cannam@132 291 inline auto expandAndApplyWithIndexes(
cannam@132 292 Indexes<indexes...>, Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
cannam@132 293 -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
cannam@132 294 return expandAndApply(kj::fwd<Func>(func), kj::mv(getImpl<indexes>(first))...,
cannam@132 295 kj::fwd<Rest>(rest)...);
cannam@132 296 }
cannam@132 297
cannam@132 298 template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
cannam@132 299 inline auto expandAndApplyWithIndexes(
cannam@132 300 Indexes<indexes...>, Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
cannam@132 301 -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
cannam@132 302 return expandAndApply(kj::fwd<Func>(func), getImpl<indexes>(first)...,
cannam@132 303 kj::fwd<Rest>(rest)...);
cannam@132 304 }
cannam@132 305
cannam@132 306 struct MakeTupleFunc {
cannam@132 307 template <typename... Params>
cannam@132 308 Tuple<Decay<Params>...> operator()(Params&&... params) {
cannam@132 309 return Tuple<Decay<Params>...>(kj::fwd<Params>(params)...);
cannam@132 310 }
cannam@132 311 template <typename Param>
cannam@132 312 Decay<Param> operator()(Param&& param) {
cannam@132 313 return kj::fwd<Param>(param);
cannam@132 314 }
cannam@132 315 };
cannam@132 316
cannam@132 317 } // namespace _ (private)
cannam@132 318
cannam@132 319 template <typename... T> struct Tuple_ { typedef _::Tuple<T...> Type; };
cannam@132 320 template <typename T> struct Tuple_<T> { typedef T Type; };
cannam@132 321
cannam@132 322 template <typename... T> using Tuple = typename Tuple_<T...>::Type;
cannam@132 323 // Tuple type. `Tuple<T>` (i.e. a single-element tuple) is a synonym for `T`. Tuples of size
cannam@132 324 // other than 1 expand to an internal type. Either way, you can construct a Tuple using
cannam@132 325 // `kj::tuple(...)`, get an element by index `i` using `kj::get<i>(myTuple)`, and expand the tuple
cannam@132 326 // as arguments to a function using `kj::apply(func, myTuple)`.
cannam@132 327 //
cannam@132 328 // Tuples are always flat -- that is, no element of a Tuple is ever itself a Tuple. If you
cannam@132 329 // construct a tuple from other tuples, the elements are flattened and concatenated.
cannam@132 330
cannam@132 331 template <typename... Params>
cannam@132 332 inline auto tuple(Params&&... params)
cannam@132 333 -> decltype(_::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...)) {
cannam@132 334 // Construct a new tuple from the given values. Any tuples in the argument list will be
cannam@132 335 // flattened into the result.
cannam@132 336 return _::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...);
cannam@132 337 }
cannam@132 338
cannam@132 339 template <size_t index, typename Tuple>
cannam@132 340 inline auto get(Tuple&& tuple) -> decltype(_::getImpl<index>(kj::fwd<Tuple>(tuple))) {
cannam@132 341 // Unpack and return the tuple element at the given index. The index is specified as a template
cannam@132 342 // parameter, e.g. `kj::get<3>(myTuple)`.
cannam@132 343 return _::getImpl<index>(kj::fwd<Tuple>(tuple));
cannam@132 344 }
cannam@132 345
cannam@132 346 template <typename Func, typename... Params>
cannam@132 347 inline auto apply(Func&& func, Params&&... params)
cannam@132 348 -> decltype(_::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...)) {
cannam@132 349 // Apply a function to some arguments, expanding tuples into separate arguments.
cannam@132 350 return _::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...);
cannam@132 351 }
cannam@132 352
cannam@132 353 template <typename T> struct TupleSize_ { static constexpr size_t size = 1; };
cannam@132 354 template <typename... T> struct TupleSize_<_::Tuple<T...>> {
cannam@132 355 static constexpr size_t size = sizeof...(T);
cannam@132 356 };
cannam@132 357
cannam@132 358 template <typename T>
cannam@132 359 constexpr size_t tupleSize() { return TupleSize_<T>::size; }
cannam@132 360 // Returns size of the tuple T.
cannam@132 361
cannam@132 362 } // namespace kj
cannam@132 363
cannam@132 364 #endif // KJ_TUPLE_H_