cannam@167
|
1 /*
|
cannam@167
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@167
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@167
|
4 *
|
cannam@167
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@167
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@167
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@167
|
8 * (at your option) any later version.
|
cannam@167
|
9 *
|
cannam@167
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@167
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@167
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@167
|
13 * GNU General Public License for more details.
|
cannam@167
|
14 *
|
cannam@167
|
15 * You should have received a copy of the GNU General Public License
|
cannam@167
|
16 * along with this program; if not, write to the Free Software
|
cannam@167
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@167
|
18 *
|
cannam@167
|
19 */
|
cannam@167
|
20
|
cannam@167
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
cannam@167
|
22 /* Generated on Thu May 24 08:06:06 EDT 2018 */
|
cannam@167
|
23
|
cannam@167
|
24 #include "dft/codelet-dft.h"
|
cannam@167
|
25
|
cannam@167
|
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
cannam@167
|
27
|
cannam@167
|
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3bv_16 -include dft/simd/t3b.h -sign 1 */
|
cannam@167
|
29
|
cannam@167
|
30 /*
|
cannam@167
|
31 * This function contains 98 FP additions, 86 FP multiplications,
|
cannam@167
|
32 * (or, 64 additions, 52 multiplications, 34 fused multiply/add),
|
cannam@167
|
33 * 51 stack variables, 3 constants, and 32 memory accesses
|
cannam@167
|
34 */
|
cannam@167
|
35 #include "dft/simd/t3b.h"
|
cannam@167
|
36
|
cannam@167
|
37 static void t3bv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
cannam@167
|
38 {
|
cannam@167
|
39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
|
cannam@167
|
40 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
cannam@167
|
41 DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
|
cannam@167
|
42 {
|
cannam@167
|
43 INT m;
|
cannam@167
|
44 R *x;
|
cannam@167
|
45 x = ii;
|
cannam@167
|
46 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) {
|
cannam@167
|
47 V T2, T8, T9, Tx, Tu, TR, T3, T4, TN, TU, Tc, Tm, Ty, TE, Tp;
|
cannam@167
|
48 T2 = LDW(&(W[0]));
|
cannam@167
|
49 T8 = LDW(&(W[TWVL * 2]));
|
cannam@167
|
50 T9 = VZMUL(T2, T8);
|
cannam@167
|
51 Tx = VZMULJ(T2, T8);
|
cannam@167
|
52 Tu = LDW(&(W[TWVL * 6]));
|
cannam@167
|
53 TR = VZMULJ(T2, Tu);
|
cannam@167
|
54 T3 = LDW(&(W[TWVL * 4]));
|
cannam@167
|
55 T4 = VZMULJ(T2, T3);
|
cannam@167
|
56 TN = VZMUL(T2, T3);
|
cannam@167
|
57 TU = VZMULJ(T8, T3);
|
cannam@167
|
58 Tc = VZMUL(T8, T3);
|
cannam@167
|
59 Tm = VZMULJ(T9, T3);
|
cannam@167
|
60 Ty = VZMULJ(Tx, T3);
|
cannam@167
|
61 TE = VZMUL(Tx, T3);
|
cannam@167
|
62 Tp = VZMUL(T9, T3);
|
cannam@167
|
63 {
|
cannam@167
|
64 V T7, T1b, Tf, T1o, TQ, TX, T1e, T1p, Tl, Ts, Tt, T1i, T1r, TB, TH;
|
cannam@167
|
65 V TI, T1l, T1s, T1, T6, T5;
|
cannam@167
|
66 T1 = LD(&(x[0]), ms, &(x[0]));
|
cannam@167
|
67 T5 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
cannam@167
|
68 T6 = VZMUL(T4, T5);
|
cannam@167
|
69 T7 = VADD(T1, T6);
|
cannam@167
|
70 T1b = VSUB(T1, T6);
|
cannam@167
|
71 {
|
cannam@167
|
72 V Tb, Te, Ta, Td;
|
cannam@167
|
73 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
cannam@167
|
74 Tb = VZMUL(T9, Ta);
|
cannam@167
|
75 Td = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
|
cannam@167
|
76 Te = VZMUL(Tc, Td);
|
cannam@167
|
77 Tf = VADD(Tb, Te);
|
cannam@167
|
78 T1o = VSUB(Tb, Te);
|
cannam@167
|
79 }
|
cannam@167
|
80 {
|
cannam@167
|
81 V TM, TW, TP, TT, T1c, T1d;
|
cannam@167
|
82 {
|
cannam@167
|
83 V TL, TV, TO, TS;
|
cannam@167
|
84 TL = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
cannam@167
|
85 TM = VZMUL(Tx, TL);
|
cannam@167
|
86 TV = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
cannam@167
|
87 TW = VZMUL(TU, TV);
|
cannam@167
|
88 TO = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
cannam@167
|
89 TP = VZMUL(TN, TO);
|
cannam@167
|
90 TS = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
|
cannam@167
|
91 TT = VZMUL(TR, TS);
|
cannam@167
|
92 }
|
cannam@167
|
93 TQ = VADD(TM, TP);
|
cannam@167
|
94 TX = VADD(TT, TW);
|
cannam@167
|
95 T1c = VSUB(TM, TP);
|
cannam@167
|
96 T1d = VSUB(TT, TW);
|
cannam@167
|
97 T1e = VADD(T1c, T1d);
|
cannam@167
|
98 T1p = VSUB(T1c, T1d);
|
cannam@167
|
99 }
|
cannam@167
|
100 {
|
cannam@167
|
101 V Ti, Tr, Tk, To, T1g, T1h;
|
cannam@167
|
102 {
|
cannam@167
|
103 V Th, Tq, Tj, Tn;
|
cannam@167
|
104 Th = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
105 Ti = VZMUL(T2, Th);
|
cannam@167
|
106 Tq = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
107 Tr = VZMUL(Tp, Tq);
|
cannam@167
|
108 Tj = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
109 Tk = VZMUL(T3, Tj);
|
cannam@167
|
110 Tn = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
111 To = VZMUL(Tm, Tn);
|
cannam@167
|
112 }
|
cannam@167
|
113 Tl = VADD(Ti, Tk);
|
cannam@167
|
114 Ts = VADD(To, Tr);
|
cannam@167
|
115 Tt = VSUB(Tl, Ts);
|
cannam@167
|
116 T1g = VSUB(Ti, Tk);
|
cannam@167
|
117 T1h = VSUB(To, Tr);
|
cannam@167
|
118 T1i = VFNMS(LDK(KP414213562), T1h, T1g);
|
cannam@167
|
119 T1r = VFMA(LDK(KP414213562), T1g, T1h);
|
cannam@167
|
120 }
|
cannam@167
|
121 {
|
cannam@167
|
122 V Tw, TG, TA, TD, T1j, T1k;
|
cannam@167
|
123 {
|
cannam@167
|
124 V Tv, TF, Tz, TC;
|
cannam@167
|
125 Tv = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
126 Tw = VZMUL(Tu, Tv);
|
cannam@167
|
127 TF = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
128 TG = VZMUL(TE, TF);
|
cannam@167
|
129 Tz = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
130 TA = VZMUL(Ty, Tz);
|
cannam@167
|
131 TC = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
132 TD = VZMUL(T8, TC);
|
cannam@167
|
133 }
|
cannam@167
|
134 TB = VADD(Tw, TA);
|
cannam@167
|
135 TH = VADD(TD, TG);
|
cannam@167
|
136 TI = VSUB(TB, TH);
|
cannam@167
|
137 T1j = VSUB(Tw, TA);
|
cannam@167
|
138 T1k = VSUB(TG, TD);
|
cannam@167
|
139 T1l = VFNMS(LDK(KP414213562), T1k, T1j);
|
cannam@167
|
140 T1s = VFMA(LDK(KP414213562), T1j, T1k);
|
cannam@167
|
141 }
|
cannam@167
|
142 {
|
cannam@167
|
143 V TK, T11, T10, T12;
|
cannam@167
|
144 {
|
cannam@167
|
145 V Tg, TJ, TY, TZ;
|
cannam@167
|
146 Tg = VSUB(T7, Tf);
|
cannam@167
|
147 TJ = VADD(Tt, TI);
|
cannam@167
|
148 TK = VFNMS(LDK(KP707106781), TJ, Tg);
|
cannam@167
|
149 T11 = VFMA(LDK(KP707106781), TJ, Tg);
|
cannam@167
|
150 TY = VSUB(TQ, TX);
|
cannam@167
|
151 TZ = VSUB(Tt, TI);
|
cannam@167
|
152 T10 = VFNMS(LDK(KP707106781), TZ, TY);
|
cannam@167
|
153 T12 = VFMA(LDK(KP707106781), TZ, TY);
|
cannam@167
|
154 }
|
cannam@167
|
155 ST(&(x[WS(rs, 6)]), VFNMSI(T10, TK), ms, &(x[0]));
|
cannam@167
|
156 ST(&(x[WS(rs, 14)]), VFNMSI(T12, T11), ms, &(x[0]));
|
cannam@167
|
157 ST(&(x[WS(rs, 10)]), VFMAI(T10, TK), ms, &(x[0]));
|
cannam@167
|
158 ST(&(x[WS(rs, 2)]), VFMAI(T12, T11), ms, &(x[0]));
|
cannam@167
|
159 }
|
cannam@167
|
160 {
|
cannam@167
|
161 V T1z, T1D, T1C, T1E;
|
cannam@167
|
162 {
|
cannam@167
|
163 V T1x, T1y, T1A, T1B;
|
cannam@167
|
164 T1x = VFNMS(LDK(KP707106781), T1e, T1b);
|
cannam@167
|
165 T1y = VADD(T1r, T1s);
|
cannam@167
|
166 T1z = VFNMS(LDK(KP923879532), T1y, T1x);
|
cannam@167
|
167 T1D = VFMA(LDK(KP923879532), T1y, T1x);
|
cannam@167
|
168 T1A = VFNMS(LDK(KP707106781), T1p, T1o);
|
cannam@167
|
169 T1B = VSUB(T1i, T1l);
|
cannam@167
|
170 T1C = VFMA(LDK(KP923879532), T1B, T1A);
|
cannam@167
|
171 T1E = VFNMS(LDK(KP923879532), T1B, T1A);
|
cannam@167
|
172 }
|
cannam@167
|
173 ST(&(x[WS(rs, 5)]), VFMAI(T1C, T1z), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
174 ST(&(x[WS(rs, 13)]), VFMAI(T1E, T1D), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
175 ST(&(x[WS(rs, 11)]), VFNMSI(T1C, T1z), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
176 ST(&(x[WS(rs, 3)]), VFNMSI(T1E, T1D), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
177 }
|
cannam@167
|
178 {
|
cannam@167
|
179 V T15, T19, T18, T1a;
|
cannam@167
|
180 {
|
cannam@167
|
181 V T13, T14, T16, T17;
|
cannam@167
|
182 T13 = VADD(T7, Tf);
|
cannam@167
|
183 T14 = VADD(TQ, TX);
|
cannam@167
|
184 T15 = VSUB(T13, T14);
|
cannam@167
|
185 T19 = VADD(T13, T14);
|
cannam@167
|
186 T16 = VADD(Tl, Ts);
|
cannam@167
|
187 T17 = VADD(TB, TH);
|
cannam@167
|
188 T18 = VSUB(T16, T17);
|
cannam@167
|
189 T1a = VADD(T16, T17);
|
cannam@167
|
190 }
|
cannam@167
|
191 ST(&(x[WS(rs, 12)]), VFNMSI(T18, T15), ms, &(x[0]));
|
cannam@167
|
192 ST(&(x[0]), VADD(T19, T1a), ms, &(x[0]));
|
cannam@167
|
193 ST(&(x[WS(rs, 4)]), VFMAI(T18, T15), ms, &(x[0]));
|
cannam@167
|
194 ST(&(x[WS(rs, 8)]), VSUB(T19, T1a), ms, &(x[0]));
|
cannam@167
|
195 }
|
cannam@167
|
196 {
|
cannam@167
|
197 V T1n, T1v, T1u, T1w;
|
cannam@167
|
198 {
|
cannam@167
|
199 V T1f, T1m, T1q, T1t;
|
cannam@167
|
200 T1f = VFMA(LDK(KP707106781), T1e, T1b);
|
cannam@167
|
201 T1m = VADD(T1i, T1l);
|
cannam@167
|
202 T1n = VFNMS(LDK(KP923879532), T1m, T1f);
|
cannam@167
|
203 T1v = VFMA(LDK(KP923879532), T1m, T1f);
|
cannam@167
|
204 T1q = VFMA(LDK(KP707106781), T1p, T1o);
|
cannam@167
|
205 T1t = VSUB(T1r, T1s);
|
cannam@167
|
206 T1u = VFNMS(LDK(KP923879532), T1t, T1q);
|
cannam@167
|
207 T1w = VFMA(LDK(KP923879532), T1t, T1q);
|
cannam@167
|
208 }
|
cannam@167
|
209 ST(&(x[WS(rs, 7)]), VFNMSI(T1u, T1n), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
210 ST(&(x[WS(rs, 1)]), VFMAI(T1w, T1v), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
211 ST(&(x[WS(rs, 9)]), VFMAI(T1u, T1n), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
212 ST(&(x[WS(rs, 15)]), VFNMSI(T1w, T1v), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
213 }
|
cannam@167
|
214 }
|
cannam@167
|
215 }
|
cannam@167
|
216 }
|
cannam@167
|
217 VLEAVE();
|
cannam@167
|
218 }
|
cannam@167
|
219
|
cannam@167
|
220 static const tw_instr twinstr[] = {
|
cannam@167
|
221 VTW(0, 1),
|
cannam@167
|
222 VTW(0, 3),
|
cannam@167
|
223 VTW(0, 9),
|
cannam@167
|
224 VTW(0, 15),
|
cannam@167
|
225 {TW_NEXT, VL, 0}
|
cannam@167
|
226 };
|
cannam@167
|
227
|
cannam@167
|
228 static const ct_desc desc = { 16, XSIMD_STRING("t3bv_16"), twinstr, &GENUS, {64, 52, 34, 0}, 0, 0, 0 };
|
cannam@167
|
229
|
cannam@167
|
230 void XSIMD(codelet_t3bv_16) (planner *p) {
|
cannam@167
|
231 X(kdft_dit_register) (p, t3bv_16, &desc);
|
cannam@167
|
232 }
|
cannam@167
|
233 #else
|
cannam@167
|
234
|
cannam@167
|
235 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3bv_16 -include dft/simd/t3b.h -sign 1 */
|
cannam@167
|
236
|
cannam@167
|
237 /*
|
cannam@167
|
238 * This function contains 98 FP additions, 64 FP multiplications,
|
cannam@167
|
239 * (or, 94 additions, 60 multiplications, 4 fused multiply/add),
|
cannam@167
|
240 * 51 stack variables, 3 constants, and 32 memory accesses
|
cannam@167
|
241 */
|
cannam@167
|
242 #include "dft/simd/t3b.h"
|
cannam@167
|
243
|
cannam@167
|
244 static void t3bv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
cannam@167
|
245 {
|
cannam@167
|
246 DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
|
cannam@167
|
247 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
|
cannam@167
|
248 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
cannam@167
|
249 {
|
cannam@167
|
250 INT m;
|
cannam@167
|
251 R *x;
|
cannam@167
|
252 x = ii;
|
cannam@167
|
253 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) {
|
cannam@167
|
254 V T1, T8, T9, Tl, Ti, TE, T4, Ta, TO, TV, Td, Tm, TA, TH, Ts;
|
cannam@167
|
255 T1 = LDW(&(W[0]));
|
cannam@167
|
256 T8 = LDW(&(W[TWVL * 2]));
|
cannam@167
|
257 T9 = VZMUL(T1, T8);
|
cannam@167
|
258 Tl = VZMULJ(T1, T8);
|
cannam@167
|
259 Ti = LDW(&(W[TWVL * 6]));
|
cannam@167
|
260 TE = VZMULJ(T1, Ti);
|
cannam@167
|
261 T4 = LDW(&(W[TWVL * 4]));
|
cannam@167
|
262 Ta = VZMULJ(T9, T4);
|
cannam@167
|
263 TO = VZMUL(T8, T4);
|
cannam@167
|
264 TV = VZMULJ(T1, T4);
|
cannam@167
|
265 Td = VZMUL(T9, T4);
|
cannam@167
|
266 Tm = VZMULJ(Tl, T4);
|
cannam@167
|
267 TA = VZMUL(T1, T4);
|
cannam@167
|
268 TH = VZMULJ(T8, T4);
|
cannam@167
|
269 Ts = VZMUL(Tl, T4);
|
cannam@167
|
270 {
|
cannam@167
|
271 V TY, T1q, TR, T1r, T1m, T1n, TL, TZ, T1f, T1g, T1h, Th, T11, T1i, T1j;
|
cannam@167
|
272 V T1k, Tw, T12, TU, TX, TW;
|
cannam@167
|
273 TU = LD(&(x[0]), ms, &(x[0]));
|
cannam@167
|
274 TW = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
cannam@167
|
275 TX = VZMUL(TV, TW);
|
cannam@167
|
276 TY = VSUB(TU, TX);
|
cannam@167
|
277 T1q = VADD(TU, TX);
|
cannam@167
|
278 {
|
cannam@167
|
279 V TN, TQ, TM, TP;
|
cannam@167
|
280 TM = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
cannam@167
|
281 TN = VZMUL(T9, TM);
|
cannam@167
|
282 TP = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
|
cannam@167
|
283 TQ = VZMUL(TO, TP);
|
cannam@167
|
284 TR = VSUB(TN, TQ);
|
cannam@167
|
285 T1r = VADD(TN, TQ);
|
cannam@167
|
286 }
|
cannam@167
|
287 {
|
cannam@167
|
288 V Tz, TJ, TC, TG, TD, TK;
|
cannam@167
|
289 {
|
cannam@167
|
290 V Ty, TI, TB, TF;
|
cannam@167
|
291 Ty = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
cannam@167
|
292 Tz = VZMUL(Tl, Ty);
|
cannam@167
|
293 TI = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
cannam@167
|
294 TJ = VZMUL(TH, TI);
|
cannam@167
|
295 TB = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
cannam@167
|
296 TC = VZMUL(TA, TB);
|
cannam@167
|
297 TF = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
|
cannam@167
|
298 TG = VZMUL(TE, TF);
|
cannam@167
|
299 }
|
cannam@167
|
300 T1m = VADD(Tz, TC);
|
cannam@167
|
301 T1n = VADD(TG, TJ);
|
cannam@167
|
302 TD = VSUB(Tz, TC);
|
cannam@167
|
303 TK = VSUB(TG, TJ);
|
cannam@167
|
304 TL = VMUL(LDK(KP707106781), VSUB(TD, TK));
|
cannam@167
|
305 TZ = VMUL(LDK(KP707106781), VADD(TD, TK));
|
cannam@167
|
306 }
|
cannam@167
|
307 {
|
cannam@167
|
308 V T3, Tf, T6, Tc, T7, Tg;
|
cannam@167
|
309 {
|
cannam@167
|
310 V T2, Te, T5, Tb;
|
cannam@167
|
311 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
312 T3 = VZMUL(T1, T2);
|
cannam@167
|
313 Te = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
314 Tf = VZMUL(Td, Te);
|
cannam@167
|
315 T5 = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
316 T6 = VZMUL(T4, T5);
|
cannam@167
|
317 Tb = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
318 Tc = VZMUL(Ta, Tb);
|
cannam@167
|
319 }
|
cannam@167
|
320 T1f = VADD(T3, T6);
|
cannam@167
|
321 T1g = VADD(Tc, Tf);
|
cannam@167
|
322 T1h = VSUB(T1f, T1g);
|
cannam@167
|
323 T7 = VSUB(T3, T6);
|
cannam@167
|
324 Tg = VSUB(Tc, Tf);
|
cannam@167
|
325 Th = VFNMS(LDK(KP382683432), Tg, VMUL(LDK(KP923879532), T7));
|
cannam@167
|
326 T11 = VFMA(LDK(KP382683432), T7, VMUL(LDK(KP923879532), Tg));
|
cannam@167
|
327 }
|
cannam@167
|
328 {
|
cannam@167
|
329 V Tk, Tu, To, Tr, Tp, Tv;
|
cannam@167
|
330 {
|
cannam@167
|
331 V Tj, Tt, Tn, Tq;
|
cannam@167
|
332 Tj = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
333 Tk = VZMUL(Ti, Tj);
|
cannam@167
|
334 Tt = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
335 Tu = VZMUL(Ts, Tt);
|
cannam@167
|
336 Tn = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
337 To = VZMUL(Tm, Tn);
|
cannam@167
|
338 Tq = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
339 Tr = VZMUL(T8, Tq);
|
cannam@167
|
340 }
|
cannam@167
|
341 T1i = VADD(Tk, To);
|
cannam@167
|
342 T1j = VADD(Tr, Tu);
|
cannam@167
|
343 T1k = VSUB(T1i, T1j);
|
cannam@167
|
344 Tp = VSUB(Tk, To);
|
cannam@167
|
345 Tv = VSUB(Tr, Tu);
|
cannam@167
|
346 Tw = VFMA(LDK(KP923879532), Tp, VMUL(LDK(KP382683432), Tv));
|
cannam@167
|
347 T12 = VFNMS(LDK(KP382683432), Tp, VMUL(LDK(KP923879532), Tv));
|
cannam@167
|
348 }
|
cannam@167
|
349 {
|
cannam@167
|
350 V T1p, T1v, T1u, T1w;
|
cannam@167
|
351 {
|
cannam@167
|
352 V T1l, T1o, T1s, T1t;
|
cannam@167
|
353 T1l = VMUL(LDK(KP707106781), VSUB(T1h, T1k));
|
cannam@167
|
354 T1o = VSUB(T1m, T1n);
|
cannam@167
|
355 T1p = VBYI(VSUB(T1l, T1o));
|
cannam@167
|
356 T1v = VBYI(VADD(T1o, T1l));
|
cannam@167
|
357 T1s = VSUB(T1q, T1r);
|
cannam@167
|
358 T1t = VMUL(LDK(KP707106781), VADD(T1h, T1k));
|
cannam@167
|
359 T1u = VSUB(T1s, T1t);
|
cannam@167
|
360 T1w = VADD(T1s, T1t);
|
cannam@167
|
361 }
|
cannam@167
|
362 ST(&(x[WS(rs, 6)]), VADD(T1p, T1u), ms, &(x[0]));
|
cannam@167
|
363 ST(&(x[WS(rs, 14)]), VSUB(T1w, T1v), ms, &(x[0]));
|
cannam@167
|
364 ST(&(x[WS(rs, 10)]), VSUB(T1u, T1p), ms, &(x[0]));
|
cannam@167
|
365 ST(&(x[WS(rs, 2)]), VADD(T1v, T1w), ms, &(x[0]));
|
cannam@167
|
366 }
|
cannam@167
|
367 {
|
cannam@167
|
368 V T1z, T1D, T1C, T1E;
|
cannam@167
|
369 {
|
cannam@167
|
370 V T1x, T1y, T1A, T1B;
|
cannam@167
|
371 T1x = VADD(T1q, T1r);
|
cannam@167
|
372 T1y = VADD(T1m, T1n);
|
cannam@167
|
373 T1z = VSUB(T1x, T1y);
|
cannam@167
|
374 T1D = VADD(T1x, T1y);
|
cannam@167
|
375 T1A = VADD(T1f, T1g);
|
cannam@167
|
376 T1B = VADD(T1i, T1j);
|
cannam@167
|
377 T1C = VBYI(VSUB(T1A, T1B));
|
cannam@167
|
378 T1E = VADD(T1A, T1B);
|
cannam@167
|
379 }
|
cannam@167
|
380 ST(&(x[WS(rs, 12)]), VSUB(T1z, T1C), ms, &(x[0]));
|
cannam@167
|
381 ST(&(x[0]), VADD(T1D, T1E), ms, &(x[0]));
|
cannam@167
|
382 ST(&(x[WS(rs, 4)]), VADD(T1z, T1C), ms, &(x[0]));
|
cannam@167
|
383 ST(&(x[WS(rs, 8)]), VSUB(T1D, T1E), ms, &(x[0]));
|
cannam@167
|
384 }
|
cannam@167
|
385 {
|
cannam@167
|
386 V TT, T15, T14, T16;
|
cannam@167
|
387 {
|
cannam@167
|
388 V Tx, TS, T10, T13;
|
cannam@167
|
389 Tx = VSUB(Th, Tw);
|
cannam@167
|
390 TS = VSUB(TL, TR);
|
cannam@167
|
391 TT = VBYI(VSUB(Tx, TS));
|
cannam@167
|
392 T15 = VBYI(VADD(TS, Tx));
|
cannam@167
|
393 T10 = VSUB(TY, TZ);
|
cannam@167
|
394 T13 = VSUB(T11, T12);
|
cannam@167
|
395 T14 = VSUB(T10, T13);
|
cannam@167
|
396 T16 = VADD(T10, T13);
|
cannam@167
|
397 }
|
cannam@167
|
398 ST(&(x[WS(rs, 5)]), VADD(TT, T14), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
399 ST(&(x[WS(rs, 13)]), VSUB(T16, T15), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
400 ST(&(x[WS(rs, 11)]), VSUB(T14, TT), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
401 ST(&(x[WS(rs, 3)]), VADD(T15, T16), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
402 }
|
cannam@167
|
403 {
|
cannam@167
|
404 V T19, T1d, T1c, T1e;
|
cannam@167
|
405 {
|
cannam@167
|
406 V T17, T18, T1a, T1b;
|
cannam@167
|
407 T17 = VADD(TY, TZ);
|
cannam@167
|
408 T18 = VADD(Th, Tw);
|
cannam@167
|
409 T19 = VADD(T17, T18);
|
cannam@167
|
410 T1d = VSUB(T17, T18);
|
cannam@167
|
411 T1a = VADD(TR, TL);
|
cannam@167
|
412 T1b = VADD(T11, T12);
|
cannam@167
|
413 T1c = VBYI(VADD(T1a, T1b));
|
cannam@167
|
414 T1e = VBYI(VSUB(T1b, T1a));
|
cannam@167
|
415 }
|
cannam@167
|
416 ST(&(x[WS(rs, 15)]), VSUB(T19, T1c), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
417 ST(&(x[WS(rs, 7)]), VADD(T1d, T1e), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
418 ST(&(x[WS(rs, 1)]), VADD(T19, T1c), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
419 ST(&(x[WS(rs, 9)]), VSUB(T1d, T1e), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
420 }
|
cannam@167
|
421 }
|
cannam@167
|
422 }
|
cannam@167
|
423 }
|
cannam@167
|
424 VLEAVE();
|
cannam@167
|
425 }
|
cannam@167
|
426
|
cannam@167
|
427 static const tw_instr twinstr[] = {
|
cannam@167
|
428 VTW(0, 1),
|
cannam@167
|
429 VTW(0, 3),
|
cannam@167
|
430 VTW(0, 9),
|
cannam@167
|
431 VTW(0, 15),
|
cannam@167
|
432 {TW_NEXT, VL, 0}
|
cannam@167
|
433 };
|
cannam@167
|
434
|
cannam@167
|
435 static const ct_desc desc = { 16, XSIMD_STRING("t3bv_16"), twinstr, &GENUS, {94, 60, 4, 0}, 0, 0, 0 };
|
cannam@167
|
436
|
cannam@167
|
437 void XSIMD(codelet_t3bv_16) (planner *p) {
|
cannam@167
|
438 X(kdft_dit_register) (p, t3bv_16, &desc);
|
cannam@167
|
439 }
|
cannam@167
|
440 #endif
|