annotate src/fftw-3.3.8/dft/simd/common/n1fv_12.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:04:51 EDT 2018 */
cannam@167 23
cannam@167 24 #include "dft/codelet-dft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n1fv_12 -include dft/simd/n1f.h */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 48 FP additions, 20 FP multiplications,
cannam@167 32 * (or, 30 additions, 2 multiplications, 18 fused multiply/add),
cannam@167 33 * 27 stack variables, 2 constants, and 24 memory accesses
cannam@167 34 */
cannam@167 35 #include "dft/simd/n1f.h"
cannam@167 36
cannam@167 37 static void n1fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
cannam@167 38 {
cannam@167 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@167 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 41 {
cannam@167 42 INT i;
cannam@167 43 const R *xi;
cannam@167 44 R *xo;
cannam@167 45 xi = ri;
cannam@167 46 xo = ro;
cannam@167 47 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
cannam@167 48 V T5, Ta, TG, TF, TB, Tt, Ti, Tm, TJ, TI, TA, Tp;
cannam@167 49 {
cannam@167 50 V T1, T6, T4, Tr, T9, Ts;
cannam@167 51 T1 = LD(&(xi[0]), ivs, &(xi[0]));
cannam@167 52 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
cannam@167 53 {
cannam@167 54 V T2, T3, T7, T8;
cannam@167 55 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
cannam@167 56 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
cannam@167 57 T4 = VADD(T2, T3);
cannam@167 58 Tr = VSUB(T3, T2);
cannam@167 59 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
cannam@167 60 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
cannam@167 61 T9 = VADD(T7, T8);
cannam@167 62 Ts = VSUB(T8, T7);
cannam@167 63 }
cannam@167 64 T5 = VFNMS(LDK(KP500000000), T4, T1);
cannam@167 65 Ta = VFNMS(LDK(KP500000000), T9, T6);
cannam@167 66 TG = VADD(T6, T9);
cannam@167 67 TF = VADD(T1, T4);
cannam@167 68 TB = VADD(Tr, Ts);
cannam@167 69 Tt = VSUB(Tr, Ts);
cannam@167 70 }
cannam@167 71 {
cannam@167 72 V Tk, Tn, Te, Tl, Th, To;
cannam@167 73 Tk = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
cannam@167 74 Tn = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
cannam@167 75 {
cannam@167 76 V Tc, Td, Tf, Tg;
cannam@167 77 Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
cannam@167 78 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
cannam@167 79 Te = VSUB(Tc, Td);
cannam@167 80 Tl = VADD(Td, Tc);
cannam@167 81 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
cannam@167 82 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
cannam@167 83 Th = VSUB(Tf, Tg);
cannam@167 84 To = VADD(Tf, Tg);
cannam@167 85 }
cannam@167 86 Ti = VADD(Te, Th);
cannam@167 87 Tm = VFNMS(LDK(KP500000000), Tl, Tk);
cannam@167 88 TJ = VADD(Tn, To);
cannam@167 89 TI = VADD(Tk, Tl);
cannam@167 90 TA = VSUB(Te, Th);
cannam@167 91 Tp = VFNMS(LDK(KP500000000), To, Tn);
cannam@167 92 }
cannam@167 93 {
cannam@167 94 V TH, TK, TL, TM;
cannam@167 95 TH = VSUB(TF, TG);
cannam@167 96 TK = VSUB(TI, TJ);
cannam@167 97 ST(&(xo[WS(os, 9)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)]));
cannam@167 98 ST(&(xo[WS(os, 3)]), VFMAI(TK, TH), ovs, &(xo[WS(os, 1)]));
cannam@167 99 TL = VADD(TF, TG);
cannam@167 100 TM = VADD(TI, TJ);
cannam@167 101 ST(&(xo[WS(os, 6)]), VSUB(TL, TM), ovs, &(xo[0]));
cannam@167 102 ST(&(xo[0]), VADD(TL, TM), ovs, &(xo[0]));
cannam@167 103 }
cannam@167 104 {
cannam@167 105 V Tj, Tv, Tu, Tw, Tb, Tq;
cannam@167 106 Tb = VSUB(T5, Ta);
cannam@167 107 Tj = VFMA(LDK(KP866025403), Ti, Tb);
cannam@167 108 Tv = VFNMS(LDK(KP866025403), Ti, Tb);
cannam@167 109 Tq = VSUB(Tm, Tp);
cannam@167 110 Tu = VFNMS(LDK(KP866025403), Tt, Tq);
cannam@167 111 Tw = VFMA(LDK(KP866025403), Tt, Tq);
cannam@167 112 ST(&(xo[WS(os, 1)]), VFNMSI(Tu, Tj), ovs, &(xo[WS(os, 1)]));
cannam@167 113 ST(&(xo[WS(os, 7)]), VFMAI(Tw, Tv), ovs, &(xo[WS(os, 1)]));
cannam@167 114 ST(&(xo[WS(os, 11)]), VFMAI(Tu, Tj), ovs, &(xo[WS(os, 1)]));
cannam@167 115 ST(&(xo[WS(os, 5)]), VFNMSI(Tw, Tv), ovs, &(xo[WS(os, 1)]));
cannam@167 116 }
cannam@167 117 {
cannam@167 118 V TC, TE, Tz, TD, Tx, Ty;
cannam@167 119 TC = VMUL(LDK(KP866025403), VSUB(TA, TB));
cannam@167 120 TE = VMUL(LDK(KP866025403), VADD(TB, TA));
cannam@167 121 Tx = VADD(T5, Ta);
cannam@167 122 Ty = VADD(Tm, Tp);
cannam@167 123 Tz = VSUB(Tx, Ty);
cannam@167 124 TD = VADD(Tx, Ty);
cannam@167 125 ST(&(xo[WS(os, 2)]), VFMAI(TC, Tz), ovs, &(xo[0]));
cannam@167 126 ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0]));
cannam@167 127 ST(&(xo[WS(os, 10)]), VFNMSI(TC, Tz), ovs, &(xo[0]));
cannam@167 128 ST(&(xo[WS(os, 4)]), VFMAI(TE, TD), ovs, &(xo[0]));
cannam@167 129 }
cannam@167 130 }
cannam@167 131 }
cannam@167 132 VLEAVE();
cannam@167 133 }
cannam@167 134
cannam@167 135 static const kdft_desc desc = { 12, XSIMD_STRING("n1fv_12"), {30, 2, 18, 0}, &GENUS, 0, 0, 0, 0 };
cannam@167 136
cannam@167 137 void XSIMD(codelet_n1fv_12) (planner *p) {
cannam@167 138 X(kdft_register) (p, n1fv_12, &desc);
cannam@167 139 }
cannam@167 140
cannam@167 141 #else
cannam@167 142
cannam@167 143 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n1fv_12 -include dft/simd/n1f.h */
cannam@167 144
cannam@167 145 /*
cannam@167 146 * This function contains 48 FP additions, 8 FP multiplications,
cannam@167 147 * (or, 44 additions, 4 multiplications, 4 fused multiply/add),
cannam@167 148 * 27 stack variables, 2 constants, and 24 memory accesses
cannam@167 149 */
cannam@167 150 #include "dft/simd/n1f.h"
cannam@167 151
cannam@167 152 static void n1fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
cannam@167 153 {
cannam@167 154 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 155 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@167 156 {
cannam@167 157 INT i;
cannam@167 158 const R *xi;
cannam@167 159 R *xo;
cannam@167 160 xi = ri;
cannam@167 161 xo = ro;
cannam@167 162 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
cannam@167 163 V T5, Ta, TJ, Ty, Tq, Tp, Tg, Tl, TI, TA, Tz, Tu;
cannam@167 164 {
cannam@167 165 V T1, T6, T4, Tw, T9, Tx;
cannam@167 166 T1 = LD(&(xi[0]), ivs, &(xi[0]));
cannam@167 167 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
cannam@167 168 {
cannam@167 169 V T2, T3, T7, T8;
cannam@167 170 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
cannam@167 171 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
cannam@167 172 T4 = VADD(T2, T3);
cannam@167 173 Tw = VSUB(T3, T2);
cannam@167 174 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
cannam@167 175 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
cannam@167 176 T9 = VADD(T7, T8);
cannam@167 177 Tx = VSUB(T8, T7);
cannam@167 178 }
cannam@167 179 T5 = VADD(T1, T4);
cannam@167 180 Ta = VADD(T6, T9);
cannam@167 181 TJ = VADD(Tw, Tx);
cannam@167 182 Ty = VMUL(LDK(KP866025403), VSUB(Tw, Tx));
cannam@167 183 Tq = VFNMS(LDK(KP500000000), T9, T6);
cannam@167 184 Tp = VFNMS(LDK(KP500000000), T4, T1);
cannam@167 185 }
cannam@167 186 {
cannam@167 187 V Tc, Th, Tf, Ts, Tk, Tt;
cannam@167 188 Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
cannam@167 189 Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
cannam@167 190 {
cannam@167 191 V Td, Te, Ti, Tj;
cannam@167 192 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
cannam@167 193 Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
cannam@167 194 Tf = VADD(Td, Te);
cannam@167 195 Ts = VSUB(Te, Td);
cannam@167 196 Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
cannam@167 197 Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
cannam@167 198 Tk = VADD(Ti, Tj);
cannam@167 199 Tt = VSUB(Tj, Ti);
cannam@167 200 }
cannam@167 201 Tg = VADD(Tc, Tf);
cannam@167 202 Tl = VADD(Th, Tk);
cannam@167 203 TI = VADD(Ts, Tt);
cannam@167 204 TA = VFNMS(LDK(KP500000000), Tk, Th);
cannam@167 205 Tz = VFNMS(LDK(KP500000000), Tf, Tc);
cannam@167 206 Tu = VMUL(LDK(KP866025403), VSUB(Ts, Tt));
cannam@167 207 }
cannam@167 208 {
cannam@167 209 V Tb, Tm, Tn, To;
cannam@167 210 Tb = VSUB(T5, Ta);
cannam@167 211 Tm = VBYI(VSUB(Tg, Tl));
cannam@167 212 ST(&(xo[WS(os, 9)]), VSUB(Tb, Tm), ovs, &(xo[WS(os, 1)]));
cannam@167 213 ST(&(xo[WS(os, 3)]), VADD(Tb, Tm), ovs, &(xo[WS(os, 1)]));
cannam@167 214 Tn = VADD(T5, Ta);
cannam@167 215 To = VADD(Tg, Tl);
cannam@167 216 ST(&(xo[WS(os, 6)]), VSUB(Tn, To), ovs, &(xo[0]));
cannam@167 217 ST(&(xo[0]), VADD(Tn, To), ovs, &(xo[0]));
cannam@167 218 }
cannam@167 219 {
cannam@167 220 V Tv, TE, TC, TD, Tr, TB;
cannam@167 221 Tr = VSUB(Tp, Tq);
cannam@167 222 Tv = VSUB(Tr, Tu);
cannam@167 223 TE = VADD(Tr, Tu);
cannam@167 224 TB = VSUB(Tz, TA);
cannam@167 225 TC = VBYI(VADD(Ty, TB));
cannam@167 226 TD = VBYI(VSUB(Ty, TB));
cannam@167 227 ST(&(xo[WS(os, 5)]), VSUB(Tv, TC), ovs, &(xo[WS(os, 1)]));
cannam@167 228 ST(&(xo[WS(os, 11)]), VSUB(TE, TD), ovs, &(xo[WS(os, 1)]));
cannam@167 229 ST(&(xo[WS(os, 7)]), VADD(TC, Tv), ovs, &(xo[WS(os, 1)]));
cannam@167 230 ST(&(xo[WS(os, 1)]), VADD(TD, TE), ovs, &(xo[WS(os, 1)]));
cannam@167 231 }
cannam@167 232 {
cannam@167 233 V TK, TM, TH, TL, TF, TG;
cannam@167 234 TK = VBYI(VMUL(LDK(KP866025403), VSUB(TI, TJ)));
cannam@167 235 TM = VBYI(VMUL(LDK(KP866025403), VADD(TJ, TI)));
cannam@167 236 TF = VADD(Tp, Tq);
cannam@167 237 TG = VADD(Tz, TA);
cannam@167 238 TH = VSUB(TF, TG);
cannam@167 239 TL = VADD(TF, TG);
cannam@167 240 ST(&(xo[WS(os, 10)]), VSUB(TH, TK), ovs, &(xo[0]));
cannam@167 241 ST(&(xo[WS(os, 4)]), VADD(TL, TM), ovs, &(xo[0]));
cannam@167 242 ST(&(xo[WS(os, 2)]), VADD(TH, TK), ovs, &(xo[0]));
cannam@167 243 ST(&(xo[WS(os, 8)]), VSUB(TL, TM), ovs, &(xo[0]));
cannam@167 244 }
cannam@167 245 }
cannam@167 246 }
cannam@167 247 VLEAVE();
cannam@167 248 }
cannam@167 249
cannam@167 250 static const kdft_desc desc = { 12, XSIMD_STRING("n1fv_12"), {44, 4, 4, 0}, &GENUS, 0, 0, 0, 0 };
cannam@167 251
cannam@167 252 void XSIMD(codelet_n1fv_12) (planner *p) {
cannam@167 253 X(kdft_register) (p, n1fv_12, &desc);
cannam@167 254 }
cannam@167 255
cannam@167 256 #endif