annotate src/fftw-3.3.8/simd-support/simd-vsx.h @ 84:08ae793730bd

Add null config files
author Chris Cannam
date Mon, 02 Mar 2020 14:03:47 +0000
parents d0c2a83c1364
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * VSX SIMD implementation added 2015 Erik Lindahl.
Chris@82 6 * Erik Lindahl places his modifications in the public domain.
Chris@82 7 *
Chris@82 8 * This program is free software; you can redistribute it and/or modify
Chris@82 9 * it under the terms of the GNU General Public License as published by
Chris@82 10 * the Free Software Foundation; either version 2 of the License, or
Chris@82 11 * (at your option) any later version.
Chris@82 12 *
Chris@82 13 * This program is distributed in the hope that it will be useful,
Chris@82 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 16 * GNU General Public License for more details.
Chris@82 17 *
Chris@82 18 * You should have received a copy of the GNU General Public License
Chris@82 19 * along with this program; if not, write to the Free Software
Chris@82 20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 21 *
Chris@82 22 */
Chris@82 23
Chris@82 24 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
Chris@82 25 # error "VSX only works in single or double precision"
Chris@82 26 #endif
Chris@82 27
Chris@82 28 #ifdef FFTW_SINGLE
Chris@82 29 # define DS(d,s) s /* single-precision option */
Chris@82 30 # define SUFF(name) name ## s
Chris@82 31 #else
Chris@82 32 # define DS(d,s) d /* double-precision option */
Chris@82 33 # define SUFF(name) name ## d
Chris@82 34 #endif
Chris@82 35
Chris@82 36 #define SIMD_SUFFIX _vsx /* for renaming */
Chris@82 37 #define VL DS(1,2) /* SIMD vector length, in term of complex numbers */
Chris@82 38 #define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2))
Chris@82 39 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
Chris@82 40
Chris@82 41 #include <altivec.h>
Chris@82 42 #include <stdio.h>
Chris@82 43
Chris@82 44 typedef DS(vector double,vector float) V;
Chris@82 45
Chris@82 46 #define VADD(a,b) vec_add(a,b)
Chris@82 47 #define VSUB(a,b) vec_sub(a,b)
Chris@82 48 #define VMUL(a,b) vec_mul(a,b)
Chris@82 49 #define VXOR(a,b) vec_xor(a,b)
Chris@82 50 #define UNPCKL(a,b) vec_mergel(a,b)
Chris@82 51 #define UNPCKH(a,b) vec_mergeh(a,b)
Chris@82 52 #ifdef FFTW_SINGLE
Chris@82 53 # define VDUPL(a) ({ const vector unsigned char perm = {0,1,2,3,0,1,2,3,8,9,10,11,8,9,10,11}; vec_perm(a,a,perm); })
Chris@82 54 # define VDUPH(a) ({ const vector unsigned char perm = {4,5,6,7,4,5,6,7,12,13,14,15,12,13,14,15}; vec_perm(a,a,perm); })
Chris@82 55 #else
Chris@82 56 # define VDUPL(a) ({ const vector unsigned char perm = {0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7}; vec_perm(a,a,perm); })
Chris@82 57 # define VDUPH(a) ({ const vector unsigned char perm = {8,9,10,11,12,13,14,15,8,9,10,11,12,13,14,15}; vec_perm(a,a,perm); })
Chris@82 58 #endif
Chris@82 59
Chris@82 60 static inline V LDK(R f) { return vec_splats(f); }
Chris@82 61
Chris@82 62 #define DVK(var, val) const R var = K(val)
Chris@82 63
Chris@82 64 static inline V VCONJ(V x)
Chris@82 65 {
Chris@82 66 const V pmpm = vec_mergel(vec_splats((R)0.0),-(vec_splats((R)0.0)));
Chris@82 67 return vec_xor(x, pmpm);
Chris@82 68 }
Chris@82 69
Chris@82 70 static inline V LDA(const R *x, INT ivs, const R *aligned_like)
Chris@82 71 {
Chris@82 72 #ifdef __ibmxl__
Chris@82 73 return vec_xl(0,(DS(double,float) *)x);
Chris@82 74 #else
Chris@82 75 return (*(const V *)(x));
Chris@82 76 #endif
Chris@82 77 }
Chris@82 78
Chris@82 79 static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
Chris@82 80 {
Chris@82 81 #ifdef __ibmxl__
Chris@82 82 vec_xst(v,0,x);
Chris@82 83 #else
Chris@82 84 *(V *)x = v;
Chris@82 85 #endif
Chris@82 86 }
Chris@82 87
Chris@82 88 static inline V FLIP_RI(V x)
Chris@82 89 {
Chris@82 90 #ifdef FFTW_SINGLE
Chris@82 91 const vector unsigned char perm = { 4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11 };
Chris@82 92 #else
Chris@82 93 const vector unsigned char perm = { 8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7 };
Chris@82 94 #endif
Chris@82 95 return vec_perm(x,x,perm);
Chris@82 96 }
Chris@82 97
Chris@82 98 #ifdef FFTW_SINGLE
Chris@82 99
Chris@82 100 static inline V LD(const R *x, INT ivs, const R *aligned_like)
Chris@82 101 {
Chris@82 102 const vector unsigned char perm = {0,1,2,3,4,5,6,7,16,17,18,19,20,21,22,23};
Chris@82 103
Chris@82 104 return vec_perm((vector float)vec_splats(*(double *)(x)),
Chris@82 105 (vector float)vec_splats(*(double *)(x+ivs)),perm);
Chris@82 106 }
Chris@82 107
Chris@82 108 static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
Chris@82 109 {
Chris@82 110 *(double *)(x+ovs) = vec_extract( (vector double)v, 1 );
Chris@82 111 *(double *)x = vec_extract( (vector double)v, 0 );
Chris@82 112 }
Chris@82 113 #else
Chris@82 114 /* DOUBLE */
Chris@82 115
Chris@82 116 # define LD LDA
Chris@82 117 # define ST STA
Chris@82 118
Chris@82 119 #endif
Chris@82 120
Chris@82 121 #define STM2 DS(STA,ST)
Chris@82 122 #define STN2(x, v0, v1, ovs) /* nop */
Chris@82 123
Chris@82 124 #ifdef FFTW_SINGLE
Chris@82 125
Chris@82 126 # define STM4(x, v, ovs, aligned_like) /* no-op */
Chris@82 127 static inline void STN4(R *x, V v0, V v1, V v2, V v3, int ovs)
Chris@82 128 {
Chris@82 129 V xxx0, xxx1, xxx2, xxx3;
Chris@82 130 xxx0 = vec_mergeh(v0,v1);
Chris@82 131 xxx1 = vec_mergel(v0,v1);
Chris@82 132 xxx2 = vec_mergeh(v2,v3);
Chris@82 133 xxx3 = vec_mergel(v2,v3);
Chris@82 134 *(double *)x = vec_extract( (vector double)xxx0, 0 );
Chris@82 135 *(double *)(x+ovs) = vec_extract( (vector double)xxx0, 1 );
Chris@82 136 *(double *)(x+2*ovs) = vec_extract( (vector double)xxx1, 0 );
Chris@82 137 *(double *)(x+3*ovs) = vec_extract( (vector double)xxx1, 1 );
Chris@82 138 *(double *)(x+2) = vec_extract( (vector double)xxx2, 0 );
Chris@82 139 *(double *)(x+ovs+2) = vec_extract( (vector double)xxx2, 1 );
Chris@82 140 *(double *)(x+2*ovs+2) = vec_extract( (vector double)xxx3, 0 );
Chris@82 141 *(double *)(x+3*ovs+2) = vec_extract( (vector double)xxx3, 1 );
Chris@82 142 }
Chris@82 143 #else /* !FFTW_SINGLE */
Chris@82 144
Chris@82 145 static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
Chris@82 146 {
Chris@82 147 (void)aligned_like; /* UNUSED */
Chris@82 148 x[0] = vec_extract(v,0);
Chris@82 149 x[ovs] = vec_extract(v,1);
Chris@82 150 }
Chris@82 151 # define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
Chris@82 152 #endif
Chris@82 153
Chris@82 154 static inline V VBYI(V x)
Chris@82 155 {
Chris@82 156 /* FIXME [matteof 2017-09-21] It is possible to use vpermxor(),
Chris@82 157 but gcc and xlc treat the permutation bits differently, and
Chris@82 158 gcc-6 seems to generate incorrect code when using
Chris@82 159 __builtin_crypto_vpermxor() (i.e., VBYI() works for a small
Chris@82 160 test case but fails in the large).
Chris@82 161
Chris@82 162 Punt on vpermxor() for now and do the simple thing.
Chris@82 163 */
Chris@82 164 return FLIP_RI(VCONJ(x));
Chris@82 165 }
Chris@82 166
Chris@82 167 /* FMA support */
Chris@82 168 #define VFMA(a, b, c) vec_madd(a,b,c)
Chris@82 169 #define VFNMS(a, b, c) vec_nmsub(a,b,c)
Chris@82 170 #define VFMS(a, b, c) vec_msub(a,b,c)
Chris@82 171 #define VFMAI(b, c) VADD(c, VBYI(b))
Chris@82 172 #define VFNMSI(b, c) VSUB(c, VBYI(b))
Chris@82 173 #define VFMACONJ(b,c) VADD(VCONJ(b),c)
Chris@82 174 #define VFMSCONJ(b,c) VSUB(VCONJ(b),c)
Chris@82 175 #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))
Chris@82 176
Chris@82 177 static inline V VZMUL(V tx, V sr)
Chris@82 178 {
Chris@82 179 V tr = VDUPL(tx);
Chris@82 180 V ti = VDUPH(tx);
Chris@82 181 tr = VMUL(sr, tr);
Chris@82 182 sr = VBYI(sr);
Chris@82 183 return VFMA(ti, sr, tr);
Chris@82 184 }
Chris@82 185
Chris@82 186 static inline V VZMULJ(V tx, V sr)
Chris@82 187 {
Chris@82 188 V tr = VDUPL(tx);
Chris@82 189 V ti = VDUPH(tx);
Chris@82 190 tr = VMUL(sr, tr);
Chris@82 191 sr = VBYI(sr);
Chris@82 192 return VFNMS(ti, sr, tr);
Chris@82 193 }
Chris@82 194
Chris@82 195 static inline V VZMULI(V tx, V sr)
Chris@82 196 {
Chris@82 197 V tr = VDUPL(tx);
Chris@82 198 V ti = VDUPH(tx);
Chris@82 199 ti = VMUL(ti, sr);
Chris@82 200 sr = VBYI(sr);
Chris@82 201 return VFMS(tr, sr, ti);
Chris@82 202 }
Chris@82 203
Chris@82 204 static inline V VZMULIJ(V tx, V sr)
Chris@82 205 {
Chris@82 206 V tr = VDUPL(tx);
Chris@82 207 V ti = VDUPH(tx);
Chris@82 208 ti = VMUL(ti, sr);
Chris@82 209 sr = VBYI(sr);
Chris@82 210 return VFMA(tr, sr, ti);
Chris@82 211 }
Chris@82 212
Chris@82 213 /* twiddle storage #1: compact, slower */
Chris@82 214 #ifdef FFTW_SINGLE
Chris@82 215 # define VTW1(v,x) \
Chris@82 216 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
Chris@82 217 static inline V BYTW1(const R *t, V sr)
Chris@82 218 {
Chris@82 219 V tx = LDA(t,0,t);
Chris@82 220 V tr = UNPCKH(tx, tx);
Chris@82 221 V ti = UNPCKL(tx, tx);
Chris@82 222 tr = VMUL(tr, sr);
Chris@82 223 sr = VBYI(sr);
Chris@82 224 return VFMA(ti, sr, tr);
Chris@82 225 }
Chris@82 226 static inline V BYTWJ1(const R *t, V sr)
Chris@82 227 {
Chris@82 228 V tx = LDA(t,0,t);
Chris@82 229 V tr = UNPCKH(tx, tx);
Chris@82 230 V ti = UNPCKL(tx, tx);
Chris@82 231 tr = VMUL(tr, sr);
Chris@82 232 sr = VBYI(sr);
Chris@82 233 return VFNMS(ti, sr, tr);
Chris@82 234 }
Chris@82 235 #else /* !FFTW_SINGLE */
Chris@82 236 # define VTW1(v,x) {TW_CEXP, v, x}
Chris@82 237 static inline V BYTW1(const R *t, V sr)
Chris@82 238 {
Chris@82 239 V tx = LD(t, 1, t);
Chris@82 240 return VZMUL(tx, sr);
Chris@82 241 }
Chris@82 242 static inline V BYTWJ1(const R *t, V sr)
Chris@82 243 {
Chris@82 244 V tx = LD(t, 1, t);
Chris@82 245 return VZMULJ(tx, sr);
Chris@82 246 }
Chris@82 247 #endif
Chris@82 248 #define TWVL1 (VL)
Chris@82 249
Chris@82 250 /* twiddle storage #2: twice the space, faster (when in cache) */
Chris@82 251 #ifdef FFTW_SINGLE
Chris@82 252 # define VTW2(v,x) \
Chris@82 253 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
Chris@82 254 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
Chris@82 255 #else /* !FFTW_SINGLE */
Chris@82 256 # define VTW2(v,x) \
Chris@82 257 {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
Chris@82 258 #endif
Chris@82 259 #define TWVL2 (2 * VL)
Chris@82 260 static inline V BYTW2(const R *t, V sr)
Chris@82 261 {
Chris@82 262 V si = FLIP_RI(sr);
Chris@82 263 V ti = LDA(t+2*VL,0,t);
Chris@82 264 V tt = VMUL(ti, si);
Chris@82 265 V tr = LDA(t,0,t);
Chris@82 266 return VFMA(tr, sr, tt);
Chris@82 267 }
Chris@82 268 static inline V BYTWJ2(const R *t, V sr)
Chris@82 269 {
Chris@82 270 V si = FLIP_RI(sr);
Chris@82 271 V tr = LDA(t,0,t);
Chris@82 272 V tt = VMUL(tr, sr);
Chris@82 273 V ti = LDA(t+2*VL,0,t);
Chris@82 274 return VFNMS(ti, si, tt);
Chris@82 275 }
Chris@82 276
Chris@82 277 /* twiddle storage #3 */
Chris@82 278 #ifdef FFTW_SINGLE
Chris@82 279 # define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
Chris@82 280 # define TWVL3 (VL)
Chris@82 281 #else
Chris@82 282 # define VTW3(v,x) VTW1(v,x)
Chris@82 283 # define TWVL3 TWVL1
Chris@82 284 #endif
Chris@82 285
Chris@82 286 /* twiddle storage for split arrays */
Chris@82 287 #ifdef FFTW_SINGLE
Chris@82 288 # define VTWS(v,x) \
Chris@82 289 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
Chris@82 290 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
Chris@82 291 #else
Chris@82 292 # define VTWS(v,x) \
Chris@82 293 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
Chris@82 294 #endif
Chris@82 295 #define TWVLS (2 * VL)
Chris@82 296
Chris@82 297 #define VLEAVE() /* nothing */
Chris@82 298
Chris@82 299 #include "simd-common.h"