Chris@82
|
1 /*
|
Chris@82
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
Chris@82
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
Chris@82
|
4 *
|
Chris@82
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@82
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@82
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@82
|
8 * (at your option) any later version.
|
Chris@82
|
9 *
|
Chris@82
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@82
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@82
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@82
|
13 * GNU General Public License for more details.
|
Chris@82
|
14 *
|
Chris@82
|
15 * You should have received a copy of the GNU General Public License
|
Chris@82
|
16 * along with this program; if not, write to the Free Software
|
Chris@82
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@82
|
18 *
|
Chris@82
|
19 */
|
Chris@82
|
20
|
Chris@82
|
21 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
|
Chris@82
|
22 #error "AVX only works in single or double precision"
|
Chris@82
|
23 #endif
|
Chris@82
|
24
|
Chris@82
|
25 #ifdef FFTW_SINGLE
|
Chris@82
|
26 # define DS(d,s) s /* single-precision option */
|
Chris@82
|
27 # define SUFF(name) name ## s
|
Chris@82
|
28 #else
|
Chris@82
|
29 # define DS(d,s) d /* double-precision option */
|
Chris@82
|
30 # define SUFF(name) name ## d
|
Chris@82
|
31 #endif
|
Chris@82
|
32
|
Chris@82
|
33 #define SIMD_SUFFIX _avx /* for renaming */
|
Chris@82
|
34 #define VL DS(2, 4) /* SIMD complex vector length */
|
Chris@82
|
35 #define SIMD_VSTRIDE_OKA(x) ((x) == 2)
|
Chris@82
|
36 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
|
Chris@82
|
37
|
Chris@82
|
38 #if defined(__GNUC__) && !defined(__AVX__) /* sanity check */
|
Chris@82
|
39 #error "compiling simd-avx.h without -mavx"
|
Chris@82
|
40 #endif
|
Chris@82
|
41
|
Chris@82
|
42 #ifdef _MSC_VER
|
Chris@82
|
43 #ifndef inline
|
Chris@82
|
44 #define inline __inline
|
Chris@82
|
45 #endif
|
Chris@82
|
46 #endif
|
Chris@82
|
47
|
Chris@82
|
48 #include <immintrin.h>
|
Chris@82
|
49
|
Chris@82
|
50 typedef DS(__m256d, __m256) V;
|
Chris@82
|
51 #define VADD SUFF(_mm256_add_p)
|
Chris@82
|
52 #define VSUB SUFF(_mm256_sub_p)
|
Chris@82
|
53 #define VMUL SUFF(_mm256_mul_p)
|
Chris@82
|
54 #define VXOR SUFF(_mm256_xor_p)
|
Chris@82
|
55 #define VSHUF SUFF(_mm256_shuffle_p)
|
Chris@82
|
56
|
Chris@82
|
57 #define SHUFVALD(fp0,fp1) \
|
Chris@82
|
58 (((fp1) << 3) | ((fp0) << 2) | ((fp1) << 1) | ((fp0)))
|
Chris@82
|
59 #define SHUFVALS(fp0,fp1,fp2,fp3) \
|
Chris@82
|
60 (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
|
Chris@82
|
61
|
Chris@82
|
62 #define VDUPL(x) DS(_mm256_unpacklo_pd(x, x), VSHUF(x, x, SHUFVALS(0, 0, 2, 2)))
|
Chris@82
|
63 #define VDUPH(x) DS(_mm256_unpackhi_pd(x, x), VSHUF(x, x, SHUFVALS(1, 1, 3, 3)))
|
Chris@82
|
64
|
Chris@82
|
65 #define VLIT(x0, x1) DS(_mm256_set_pd(x0, x1, x0, x1), _mm256_set_ps(x0, x1, x0, x1, x0, x1, x0, x1))
|
Chris@82
|
66 #define DVK(var, val) V var = VLIT(val, val)
|
Chris@82
|
67 #define LDK(x) x
|
Chris@82
|
68
|
Chris@82
|
69 static inline V LDA(const R *x, INT ivs, const R *aligned_like)
|
Chris@82
|
70 {
|
Chris@82
|
71 (void)aligned_like; /* UNUSED */
|
Chris@82
|
72 (void)ivs; /* UNUSED */
|
Chris@82
|
73 return SUFF(_mm256_loadu_p)(x);
|
Chris@82
|
74 }
|
Chris@82
|
75
|
Chris@82
|
76 static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
|
Chris@82
|
77 {
|
Chris@82
|
78 (void)aligned_like; /* UNUSED */
|
Chris@82
|
79 (void)ovs; /* UNUSED */
|
Chris@82
|
80 SUFF(_mm256_storeu_p)(x, v);
|
Chris@82
|
81 }
|
Chris@82
|
82
|
Chris@82
|
83 #if FFTW_SINGLE
|
Chris@82
|
84
|
Chris@82
|
85 # ifdef _MSC_VER
|
Chris@82
|
86 /* Temporarily disable the warning "uninitialized local variable
|
Chris@82
|
87 'name' used" and runtime checks for using a variable before it is
|
Chris@82
|
88 defined which is erroneously triggered by the LOADL0 / LOADH macros
|
Chris@82
|
89 as they only modify VAL partly each. */
|
Chris@82
|
90 # ifndef __INTEL_COMPILER
|
Chris@82
|
91 # pragma warning(disable : 4700)
|
Chris@82
|
92 # pragma runtime_checks("u", off)
|
Chris@82
|
93 # endif
|
Chris@82
|
94 # endif
|
Chris@82
|
95 # ifdef __INTEL_COMPILER
|
Chris@82
|
96 # pragma warning(disable : 592)
|
Chris@82
|
97 # endif
|
Chris@82
|
98
|
Chris@82
|
99 #define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr))
|
Chris@82
|
100 #define LOADL(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr))
|
Chris@82
|
101 #define STOREH(addr, val) _mm_storeh_pi((__m64 *)(addr), val)
|
Chris@82
|
102 #define STOREL(addr, val) _mm_storel_pi((__m64 *)(addr), val)
|
Chris@82
|
103
|
Chris@82
|
104 /* it seems like the only AVX way to store 4 complex floats is to
|
Chris@82
|
105 extract two pairs of complex floats into two __m128 registers, and
|
Chris@82
|
106 then use SSE-like half-stores. Similarly, to load 4 complex
|
Chris@82
|
107 floats, we load two pairs of complex floats into two __m128
|
Chris@82
|
108 registers, and then pack the two __m128 registers into one __m256
|
Chris@82
|
109 value. */
|
Chris@82
|
110 static inline V LD(const R *x, INT ivs, const R *aligned_like)
|
Chris@82
|
111 {
|
Chris@82
|
112 __m128 l, h;
|
Chris@82
|
113 V v;
|
Chris@82
|
114 (void)aligned_like; /* UNUSED */
|
Chris@82
|
115 l = LOADL(x, l);
|
Chris@82
|
116 l = LOADH(x + ivs, l);
|
Chris@82
|
117 h = LOADL(x + 2*ivs, h);
|
Chris@82
|
118 h = LOADH(x + 3*ivs, h);
|
Chris@82
|
119 v = _mm256_castps128_ps256(l);
|
Chris@82
|
120 v = _mm256_insertf128_ps(v, h, 1);
|
Chris@82
|
121 return v;
|
Chris@82
|
122 }
|
Chris@82
|
123
|
Chris@82
|
124 # ifdef _MSC_VER
|
Chris@82
|
125 # ifndef __INTEL_COMPILER
|
Chris@82
|
126 # pragma warning(default : 4700)
|
Chris@82
|
127 # pragma runtime_checks("u", restore)
|
Chris@82
|
128 # endif
|
Chris@82
|
129 # endif
|
Chris@82
|
130 # ifdef __INTEL_COMPILER
|
Chris@82
|
131 # pragma warning(default : 592)
|
Chris@82
|
132 # endif
|
Chris@82
|
133
|
Chris@82
|
134 static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
|
Chris@82
|
135 {
|
Chris@82
|
136 __m128 h = _mm256_extractf128_ps(v, 1);
|
Chris@82
|
137 __m128 l = _mm256_castps256_ps128(v);
|
Chris@82
|
138 (void)aligned_like; /* UNUSED */
|
Chris@82
|
139 /* WARNING: the extra_iter hack depends upon STOREL occurring
|
Chris@82
|
140 after STOREH */
|
Chris@82
|
141 STOREH(x + 3*ovs, h);
|
Chris@82
|
142 STOREL(x + 2*ovs, h);
|
Chris@82
|
143 STOREH(x + ovs, l);
|
Chris@82
|
144 STOREL(x, l);
|
Chris@82
|
145 }
|
Chris@82
|
146
|
Chris@82
|
147 #define STM2(x, v, ovs, aligned_like) /* no-op */
|
Chris@82
|
148 static inline void STN2(R *x, V v0, V v1, INT ovs)
|
Chris@82
|
149 {
|
Chris@82
|
150 V x0 = VSHUF(v0, v1, SHUFVALS(0, 1, 0, 1));
|
Chris@82
|
151 V x1 = VSHUF(v0, v1, SHUFVALS(2, 3, 2, 3));
|
Chris@82
|
152 __m128 h0 = _mm256_extractf128_ps(x0, 1);
|
Chris@82
|
153 __m128 l0 = _mm256_castps256_ps128(x0);
|
Chris@82
|
154 __m128 h1 = _mm256_extractf128_ps(x1, 1);
|
Chris@82
|
155 __m128 l1 = _mm256_castps256_ps128(x1);
|
Chris@82
|
156
|
Chris@82
|
157 *(__m128 *)(x + 3*ovs) = h1;
|
Chris@82
|
158 *(__m128 *)(x + 2*ovs) = h0;
|
Chris@82
|
159 *(__m128 *)(x + 1*ovs) = l1;
|
Chris@82
|
160 *(__m128 *)(x + 0*ovs) = l0;
|
Chris@82
|
161 }
|
Chris@82
|
162
|
Chris@82
|
163 #define STM4(x, v, ovs, aligned_like) /* no-op */
|
Chris@82
|
164 #define STN4(x, v0, v1, v2, v3, ovs) \
|
Chris@82
|
165 { \
|
Chris@82
|
166 V xxx0, xxx1, xxx2, xxx3; \
|
Chris@82
|
167 V yyy0, yyy1, yyy2, yyy3; \
|
Chris@82
|
168 xxx0 = _mm256_unpacklo_ps(v0, v2); \
|
Chris@82
|
169 xxx1 = _mm256_unpackhi_ps(v0, v2); \
|
Chris@82
|
170 xxx2 = _mm256_unpacklo_ps(v1, v3); \
|
Chris@82
|
171 xxx3 = _mm256_unpackhi_ps(v1, v3); \
|
Chris@82
|
172 yyy0 = _mm256_unpacklo_ps(xxx0, xxx2); \
|
Chris@82
|
173 yyy1 = _mm256_unpackhi_ps(xxx0, xxx2); \
|
Chris@82
|
174 yyy2 = _mm256_unpacklo_ps(xxx1, xxx3); \
|
Chris@82
|
175 yyy3 = _mm256_unpackhi_ps(xxx1, xxx3); \
|
Chris@82
|
176 *(__m128 *)(x + 0 * ovs) = _mm256_castps256_ps128(yyy0); \
|
Chris@82
|
177 *(__m128 *)(x + 4 * ovs) = _mm256_extractf128_ps(yyy0, 1); \
|
Chris@82
|
178 *(__m128 *)(x + 1 * ovs) = _mm256_castps256_ps128(yyy1); \
|
Chris@82
|
179 *(__m128 *)(x + 5 * ovs) = _mm256_extractf128_ps(yyy1, 1); \
|
Chris@82
|
180 *(__m128 *)(x + 2 * ovs) = _mm256_castps256_ps128(yyy2); \
|
Chris@82
|
181 *(__m128 *)(x + 6 * ovs) = _mm256_extractf128_ps(yyy2, 1); \
|
Chris@82
|
182 *(__m128 *)(x + 3 * ovs) = _mm256_castps256_ps128(yyy3); \
|
Chris@82
|
183 *(__m128 *)(x + 7 * ovs) = _mm256_extractf128_ps(yyy3, 1); \
|
Chris@82
|
184 }
|
Chris@82
|
185
|
Chris@82
|
186 #else
|
Chris@82
|
187 static inline __m128d VMOVAPD_LD(const R *x)
|
Chris@82
|
188 {
|
Chris@82
|
189 /* gcc-4.6 miscompiles the combination _mm256_castpd128_pd256(VMOVAPD_LD(x))
|
Chris@82
|
190 into a 256-bit vmovapd, which requires 32-byte aligment instead of
|
Chris@82
|
191 16-byte alignment.
|
Chris@82
|
192
|
Chris@82
|
193 Force the use of vmovapd via asm until compilers stabilize.
|
Chris@82
|
194 */
|
Chris@82
|
195 #if defined(__GNUC__)
|
Chris@82
|
196 __m128d var;
|
Chris@82
|
197 __asm__("vmovapd %1, %0\n" : "=x"(var) : "m"(x[0]));
|
Chris@82
|
198 return var;
|
Chris@82
|
199 #else
|
Chris@82
|
200 return *(const __m128d *)x;
|
Chris@82
|
201 #endif
|
Chris@82
|
202 }
|
Chris@82
|
203
|
Chris@82
|
204 static inline V LD(const R *x, INT ivs, const R *aligned_like)
|
Chris@82
|
205 {
|
Chris@82
|
206 V var;
|
Chris@82
|
207 (void)aligned_like; /* UNUSED */
|
Chris@82
|
208 var = _mm256_castpd128_pd256(VMOVAPD_LD(x));
|
Chris@82
|
209 var = _mm256_insertf128_pd(var, *(const __m128d *)(x+ivs), 1);
|
Chris@82
|
210 return var;
|
Chris@82
|
211 }
|
Chris@82
|
212
|
Chris@82
|
213 static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
|
Chris@82
|
214 {
|
Chris@82
|
215 (void)aligned_like; /* UNUSED */
|
Chris@82
|
216 /* WARNING: the extra_iter hack depends upon the store of the low
|
Chris@82
|
217 part occurring after the store of the high part */
|
Chris@82
|
218 *(__m128d *)(x + ovs) = _mm256_extractf128_pd(v, 1);
|
Chris@82
|
219 *(__m128d *)x = _mm256_castpd256_pd128(v);
|
Chris@82
|
220 }
|
Chris@82
|
221
|
Chris@82
|
222
|
Chris@82
|
223 #define STM2 ST
|
Chris@82
|
224 #define STN2(x, v0, v1, ovs) /* nop */
|
Chris@82
|
225 #define STM4(x, v, ovs, aligned_like) /* no-op */
|
Chris@82
|
226
|
Chris@82
|
227 /* STN4 is a macro, not a function, thanks to Visual C++ developers
|
Chris@82
|
228 deciding "it would be infrequent that people would want to pass more
|
Chris@82
|
229 than 3 [__m128 parameters] by value." Even though the comment
|
Chris@82
|
230 was made about __m128 parameters, it appears to apply to __m256
|
Chris@82
|
231 parameters as well. */
|
Chris@82
|
232 #define STN4(x, v0, v1, v2, v3, ovs) \
|
Chris@82
|
233 { \
|
Chris@82
|
234 V xxx0, xxx1, xxx2, xxx3; \
|
Chris@82
|
235 xxx0 = _mm256_unpacklo_pd(v0, v1); \
|
Chris@82
|
236 xxx1 = _mm256_unpackhi_pd(v0, v1); \
|
Chris@82
|
237 xxx2 = _mm256_unpacklo_pd(v2, v3); \
|
Chris@82
|
238 xxx3 = _mm256_unpackhi_pd(v2, v3); \
|
Chris@82
|
239 STA(x, _mm256_permute2f128_pd(xxx0, xxx2, 0x20), 0, 0); \
|
Chris@82
|
240 STA(x + ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x20), 0, 0); \
|
Chris@82
|
241 STA(x + 2 * ovs, _mm256_permute2f128_pd(xxx0, xxx2, 0x31), 0, 0); \
|
Chris@82
|
242 STA(x + 3 * ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x31), 0, 0); \
|
Chris@82
|
243 }
|
Chris@82
|
244 #endif
|
Chris@82
|
245
|
Chris@82
|
246 static inline V FLIP_RI(V x)
|
Chris@82
|
247 {
|
Chris@82
|
248 return VSHUF(x, x,
|
Chris@82
|
249 DS(SHUFVALD(1, 0),
|
Chris@82
|
250 SHUFVALS(1, 0, 3, 2)));
|
Chris@82
|
251 }
|
Chris@82
|
252
|
Chris@82
|
253 static inline V VCONJ(V x)
|
Chris@82
|
254 {
|
Chris@82
|
255 /* Produce a SIMD vector[VL] of (0 + -0i).
|
Chris@82
|
256
|
Chris@82
|
257 We really want to write this:
|
Chris@82
|
258
|
Chris@82
|
259 V pmpm = VLIT(-0.0, 0.0);
|
Chris@82
|
260
|
Chris@82
|
261 but historically some compilers have ignored the distiction
|
Chris@82
|
262 between +0 and -0. It looks like 'gcc-8 -fast-math' treats -0
|
Chris@82
|
263 as 0 too.
|
Chris@82
|
264 */
|
Chris@82
|
265 union uvec {
|
Chris@82
|
266 unsigned u[8];
|
Chris@82
|
267 V v;
|
Chris@82
|
268 };
|
Chris@82
|
269 static const union uvec pmpm = {
|
Chris@82
|
270 #ifdef FFTW_SINGLE
|
Chris@82
|
271 { 0x00000000, 0x80000000, 0x00000000, 0x80000000,
|
Chris@82
|
272 0x00000000, 0x80000000, 0x00000000, 0x80000000 }
|
Chris@82
|
273 #else
|
Chris@82
|
274 { 0x00000000, 0x00000000, 0x00000000, 0x80000000,
|
Chris@82
|
275 0x00000000, 0x00000000, 0x00000000, 0x80000000 }
|
Chris@82
|
276 #endif
|
Chris@82
|
277 };
|
Chris@82
|
278 return VXOR(pmpm.v, x);
|
Chris@82
|
279 }
|
Chris@82
|
280
|
Chris@82
|
281 static inline V VBYI(V x)
|
Chris@82
|
282 {
|
Chris@82
|
283 return FLIP_RI(VCONJ(x));
|
Chris@82
|
284 }
|
Chris@82
|
285
|
Chris@82
|
286 /* FMA support */
|
Chris@82
|
287 #define VFMA(a, b, c) VADD(c, VMUL(a, b))
|
Chris@82
|
288 #define VFNMS(a, b, c) VSUB(c, VMUL(a, b))
|
Chris@82
|
289 #define VFMS(a, b, c) VSUB(VMUL(a, b), c)
|
Chris@82
|
290 #define VFMAI(b, c) VADD(c, VBYI(b))
|
Chris@82
|
291 #define VFNMSI(b, c) VSUB(c, VBYI(b))
|
Chris@82
|
292 #define VFMACONJ(b,c) VADD(VCONJ(b),c)
|
Chris@82
|
293 #define VFMSCONJ(b,c) VSUB(VCONJ(b),c)
|
Chris@82
|
294 #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))
|
Chris@82
|
295
|
Chris@82
|
296 static inline V VZMUL(V tx, V sr)
|
Chris@82
|
297 {
|
Chris@82
|
298 V tr = VDUPL(tx);
|
Chris@82
|
299 V ti = VDUPH(tx);
|
Chris@82
|
300 tr = VMUL(sr, tr);
|
Chris@82
|
301 sr = VBYI(sr);
|
Chris@82
|
302 return VFMA(ti, sr, tr);
|
Chris@82
|
303 }
|
Chris@82
|
304
|
Chris@82
|
305 static inline V VZMULJ(V tx, V sr)
|
Chris@82
|
306 {
|
Chris@82
|
307 V tr = VDUPL(tx);
|
Chris@82
|
308 V ti = VDUPH(tx);
|
Chris@82
|
309 tr = VMUL(sr, tr);
|
Chris@82
|
310 sr = VBYI(sr);
|
Chris@82
|
311 return VFNMS(ti, sr, tr);
|
Chris@82
|
312 }
|
Chris@82
|
313
|
Chris@82
|
314 static inline V VZMULI(V tx, V sr)
|
Chris@82
|
315 {
|
Chris@82
|
316 V tr = VDUPL(tx);
|
Chris@82
|
317 V ti = VDUPH(tx);
|
Chris@82
|
318 ti = VMUL(ti, sr);
|
Chris@82
|
319 sr = VBYI(sr);
|
Chris@82
|
320 return VFMS(tr, sr, ti);
|
Chris@82
|
321 }
|
Chris@82
|
322
|
Chris@82
|
323 static inline V VZMULIJ(V tx, V sr)
|
Chris@82
|
324 {
|
Chris@82
|
325 V tr = VDUPL(tx);
|
Chris@82
|
326 V ti = VDUPH(tx);
|
Chris@82
|
327 ti = VMUL(ti, sr);
|
Chris@82
|
328 sr = VBYI(sr);
|
Chris@82
|
329 return VFMA(tr, sr, ti);
|
Chris@82
|
330 }
|
Chris@82
|
331
|
Chris@82
|
332 /* twiddle storage #1: compact, slower */
|
Chris@82
|
333 #ifdef FFTW_SINGLE
|
Chris@82
|
334 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}, {TW_CEXP, v+2, x}, {TW_CEXP, v+3, x}
|
Chris@82
|
335 #else
|
Chris@82
|
336 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
|
Chris@82
|
337 #endif
|
Chris@82
|
338 #define TWVL1 (VL)
|
Chris@82
|
339
|
Chris@82
|
340 static inline V BYTW1(const R *t, V sr)
|
Chris@82
|
341 {
|
Chris@82
|
342 return VZMUL(LDA(t, 2, t), sr);
|
Chris@82
|
343 }
|
Chris@82
|
344
|
Chris@82
|
345 static inline V BYTWJ1(const R *t, V sr)
|
Chris@82
|
346 {
|
Chris@82
|
347 return VZMULJ(LDA(t, 2, t), sr);
|
Chris@82
|
348 }
|
Chris@82
|
349
|
Chris@82
|
350 /* twiddle storage #2: twice the space, faster (when in cache) */
|
Chris@82
|
351 #ifdef FFTW_SINGLE
|
Chris@82
|
352 # define VTW2(v,x) \
|
Chris@82
|
353 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
|
Chris@82
|
354 {TW_COS, v+2, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, {TW_COS, v+3, x}, \
|
Chris@82
|
355 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}, \
|
Chris@82
|
356 {TW_SIN, v+2, -x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, -x}, {TW_SIN, v+3, x}
|
Chris@82
|
357 #else
|
Chris@82
|
358 # define VTW2(v,x) \
|
Chris@82
|
359 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
|
Chris@82
|
360 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
|
Chris@82
|
361 #endif
|
Chris@82
|
362 #define TWVL2 (2 * VL)
|
Chris@82
|
363
|
Chris@82
|
364 static inline V BYTW2(const R *t, V sr)
|
Chris@82
|
365 {
|
Chris@82
|
366 const V *twp = (const V *)t;
|
Chris@82
|
367 V si = FLIP_RI(sr);
|
Chris@82
|
368 V tr = twp[0], ti = twp[1];
|
Chris@82
|
369 return VFMA(tr, sr, VMUL(ti, si));
|
Chris@82
|
370 }
|
Chris@82
|
371
|
Chris@82
|
372 static inline V BYTWJ2(const R *t, V sr)
|
Chris@82
|
373 {
|
Chris@82
|
374 const V *twp = (const V *)t;
|
Chris@82
|
375 V si = FLIP_RI(sr);
|
Chris@82
|
376 V tr = twp[0], ti = twp[1];
|
Chris@82
|
377 return VFNMS(ti, si, VMUL(tr, sr));
|
Chris@82
|
378 }
|
Chris@82
|
379
|
Chris@82
|
380 /* twiddle storage #3 */
|
Chris@82
|
381 #define VTW3 VTW1
|
Chris@82
|
382 #define TWVL3 TWVL1
|
Chris@82
|
383
|
Chris@82
|
384 /* twiddle storage for split arrays */
|
Chris@82
|
385 #ifdef FFTW_SINGLE
|
Chris@82
|
386 # define VTWS(v,x) \
|
Chris@82
|
387 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
|
Chris@82
|
388 {TW_COS, v+4, x}, {TW_COS, v+5, x}, {TW_COS, v+6, x}, {TW_COS, v+7, x}, \
|
Chris@82
|
389 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}, \
|
Chris@82
|
390 {TW_SIN, v+4, x}, {TW_SIN, v+5, x}, {TW_SIN, v+6, x}, {TW_SIN, v+7, x}
|
Chris@82
|
391 #else
|
Chris@82
|
392 # define VTWS(v,x) \
|
Chris@82
|
393 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
|
Chris@82
|
394 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
|
Chris@82
|
395 #endif
|
Chris@82
|
396 #define TWVLS (2 * VL)
|
Chris@82
|
397
|
Chris@82
|
398
|
Chris@82
|
399 /* Use VZEROUPPER to avoid the penalty of switching from AVX to SSE.
|
Chris@82
|
400 See Intel Optimization Manual (April 2011, version 248966), Section
|
Chris@82
|
401 11.3 */
|
Chris@82
|
402 #define VLEAVE _mm256_zeroupper
|
Chris@82
|
403
|
Chris@82
|
404 #include "simd-common.h"
|