annotate src/fftw-3.3.8/genfft/complex.ml @ 84:08ae793730bd

Add null config files
author Chris Cannam
date Mon, 02 Mar 2020 14:03:47 +0000
parents d0c2a83c1364
children
rev   line source
Chris@82 1 (*
Chris@82 2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
Chris@82 3 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 4 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 5 *
Chris@82 6 * This program is free software; you can redistribute it and/or modify
Chris@82 7 * it under the terms of the GNU General Public License as published by
Chris@82 8 * the Free Software Foundation; either version 2 of the License, or
Chris@82 9 * (at your option) any later version.
Chris@82 10 *
Chris@82 11 * This program is distributed in the hope that it will be useful,
Chris@82 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 14 * GNU General Public License for more details.
Chris@82 15 *
Chris@82 16 * You should have received a copy of the GNU General Public License
Chris@82 17 * along with this program; if not, write to the Free Software
Chris@82 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 19 *
Chris@82 20 *)
Chris@82 21
Chris@82 22 (* abstraction layer for complex operations *)
Chris@82 23 open Littlesimp
Chris@82 24 open Expr
Chris@82 25
Chris@82 26 (* type of complex expressions *)
Chris@82 27 type expr = CE of Expr.expr * Expr.expr
Chris@82 28
Chris@82 29 let two = CE (makeNum Number.two, makeNum Number.zero)
Chris@82 30 let one = CE (makeNum Number.one, makeNum Number.zero)
Chris@82 31 let i = CE (makeNum Number.zero, makeNum Number.one)
Chris@82 32 let zero = CE (makeNum Number.zero, makeNum Number.zero)
Chris@82 33 let make (r, i) = CE (r, i)
Chris@82 34
Chris@82 35 let uminus (CE (a, b)) = CE (makeUminus a, makeUminus b)
Chris@82 36
Chris@82 37 let inverse_int n = CE (makeNum (Number.div Number.one (Number.of_int n)),
Chris@82 38 makeNum Number.zero)
Chris@82 39
Chris@82 40 let inverse_int_sqrt n =
Chris@82 41 CE (makeNum (Number.div Number.one (Number.sqrt (Number.of_int n))),
Chris@82 42 makeNum Number.zero)
Chris@82 43 let int_sqrt n =
Chris@82 44 CE (makeNum (Number.sqrt (Number.of_int n)),
Chris@82 45 makeNum Number.zero)
Chris@82 46
Chris@82 47 let nan x = CE (NaN x, makeNum Number.zero)
Chris@82 48
Chris@82 49 let half = inverse_int 2
Chris@82 50
Chris@82 51 let times3x3 (CE (a, b)) (CE (c, d)) =
Chris@82 52 CE (makePlus [makeTimes (c, makePlus [a; makeUminus (b)]);
Chris@82 53 makeTimes (b, makePlus [c; makeUminus (d)])],
Chris@82 54 makePlus [makeTimes (a, makePlus [c; d]);
Chris@82 55 makeUminus(makeTimes (c, makePlus [a; makeUminus (b)]))])
Chris@82 56
Chris@82 57 let times (CE (a, b)) (CE (c, d)) =
Chris@82 58 if not !Magic.threemult then
Chris@82 59 CE (makePlus [makeTimes (a, c); makeUminus (makeTimes (b, d))],
Chris@82 60 makePlus [makeTimes (a, d); makeTimes (b, c)])
Chris@82 61 else if is_constant c && is_constant d then
Chris@82 62 times3x3 (CE (a, b)) (CE (c, d))
Chris@82 63 else (* hope a and b are constant expressions *)
Chris@82 64 times3x3 (CE (c, d)) (CE (a, b))
Chris@82 65
Chris@82 66 let ctimes (CE (a, _)) (CE (c, _)) =
Chris@82 67 CE (CTimes (a, c), makeNum Number.zero)
Chris@82 68
Chris@82 69 let ctimesj (CE (a, _)) (CE (c, _)) =
Chris@82 70 CE (CTimesJ (a, c), makeNum Number.zero)
Chris@82 71
Chris@82 72 (* complex exponential (of root of unity); returns exp(2*pi*i/n * m) *)
Chris@82 73 let exp n i =
Chris@82 74 let (c, s) = Number.cexp n i
Chris@82 75 in CE (makeNum c, makeNum s)
Chris@82 76
Chris@82 77 (* various trig functions evaluated at (2*pi*i/n * m) *)
Chris@82 78 let sec n m =
Chris@82 79 let (c, s) = Number.cexp n m
Chris@82 80 in CE (makeNum (Number.div Number.one c), makeNum Number.zero)
Chris@82 81 let csc n m =
Chris@82 82 let (c, s) = Number.cexp n m
Chris@82 83 in CE (makeNum (Number.div Number.one s), makeNum Number.zero)
Chris@82 84 let tan n m =
Chris@82 85 let (c, s) = Number.cexp n m
Chris@82 86 in CE (makeNum (Number.div s c), makeNum Number.zero)
Chris@82 87 let cot n m =
Chris@82 88 let (c, s) = Number.cexp n m
Chris@82 89 in CE (makeNum (Number.div c s), makeNum Number.zero)
Chris@82 90
Chris@82 91 (* complex sum *)
Chris@82 92 let plus a =
Chris@82 93 let rec unzip_complex = function
Chris@82 94 [] -> ([], [])
Chris@82 95 | ((CE (a, b)) :: s) ->
Chris@82 96 let (r,i) = unzip_complex s
Chris@82 97 in
Chris@82 98 (a::r), (b::i) in
Chris@82 99 let (c, d) = unzip_complex a in
Chris@82 100 CE (makePlus c, makePlus d)
Chris@82 101
Chris@82 102 (* extract real/imaginary *)
Chris@82 103 let real (CE (a, b)) = CE (a, makeNum Number.zero)
Chris@82 104 let imag (CE (a, b)) = CE (b, makeNum Number.zero)
Chris@82 105 let iimag (CE (a, b)) = CE (makeNum Number.zero, b)
Chris@82 106 let conj (CE (a, b)) = CE (a, makeUminus b)
Chris@82 107
Chris@82 108
Chris@82 109 (* abstraction of sum_{i=0}^{n-1} *)
Chris@82 110 let sigma a b f = plus (List.map f (Util.interval a b))
Chris@82 111
Chris@82 112 (* store and assignment operations *)
Chris@82 113 let store_real v (CE (a, b)) = Expr.Store (v, a)
Chris@82 114 let store_imag v (CE (a, b)) = Expr.Store (v, b)
Chris@82 115 let store (vr, vi) x = (store_real vr x, store_imag vi x)
Chris@82 116
Chris@82 117 let assign_real v (CE (a, b)) = Expr.Assign (v, a)
Chris@82 118 let assign_imag v (CE (a, b)) = Expr.Assign (v, b)
Chris@82 119 let assign (vr, vi) x = (assign_real vr x, assign_imag vi x)
Chris@82 120
Chris@82 121
Chris@82 122 (************************
Chris@82 123 shortcuts
Chris@82 124 ************************)
Chris@82 125 let (@*) = times
Chris@82 126 let (@+) a b = plus [a; b]
Chris@82 127 let (@-) a b = plus [a; uminus b]
Chris@82 128
Chris@82 129 (* type of complex signals *)
Chris@82 130 type signal = int -> expr
Chris@82 131
Chris@82 132 (* make a finite signal infinite *)
Chris@82 133 let infinite n signal i = if ((0 <= i) && (i < n)) then signal i else zero
Chris@82 134
Chris@82 135 let hermitian n a =
Chris@82 136 Util.array n (fun i ->
Chris@82 137 if (i = 0) then real (a 0)
Chris@82 138 else if (i < n - i) then (a i)
Chris@82 139 else if (i > n - i) then conj (a (n - i))
Chris@82 140 else real (a i))
Chris@82 141
Chris@82 142 let antihermitian n a =
Chris@82 143 Util.array n (fun i ->
Chris@82 144 if (i = 0) then iimag (a 0)
Chris@82 145 else if (i < n - i) then (a i)
Chris@82 146 else if (i > n - i) then uminus (conj (a (n - i)))
Chris@82 147 else iimag (a i))