annotate src/fftw-3.3.8/dft/scalar/codelets/t1_5.c @ 84:08ae793730bd

Add null config files
author Chris Cannam
date Mon, 02 Mar 2020 14:03:47 +0000
parents d0c2a83c1364
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@82 22 /* Generated on Thu May 24 08:04:12 EDT 2018 */
Chris@82 23
Chris@82 24 #include "dft/codelet-dft.h"
Chris@82 25
Chris@82 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
Chris@82 27
Chris@82 28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 5 -name t1_5 -include dft/scalar/t.h */
Chris@82 29
Chris@82 30 /*
Chris@82 31 * This function contains 40 FP additions, 34 FP multiplications,
Chris@82 32 * (or, 14 additions, 8 multiplications, 26 fused multiply/add),
Chris@82 33 * 31 stack variables, 4 constants, and 20 memory accesses
Chris@82 34 */
Chris@82 35 #include "dft/scalar/t.h"
Chris@82 36
Chris@82 37 static void t1_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 38 {
Chris@82 39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@82 40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@82 41 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@82 42 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@82 43 {
Chris@82 44 INT m;
Chris@82 45 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
Chris@82 46 E T1, TM, T7, Tx, Td, Tz, Te, TJ, Tk, TC, Tq, TE, Tr, TK;
Chris@82 47 T1 = ri[0];
Chris@82 48 TM = ii[0];
Chris@82 49 {
Chris@82 50 E T3, T6, T4, Tw, T9, Tc, Ta, Ty, T2, T8, T5, Tb;
Chris@82 51 T3 = ri[WS(rs, 1)];
Chris@82 52 T6 = ii[WS(rs, 1)];
Chris@82 53 T2 = W[0];
Chris@82 54 T4 = T2 * T3;
Chris@82 55 Tw = T2 * T6;
Chris@82 56 T9 = ri[WS(rs, 4)];
Chris@82 57 Tc = ii[WS(rs, 4)];
Chris@82 58 T8 = W[6];
Chris@82 59 Ta = T8 * T9;
Chris@82 60 Ty = T8 * Tc;
Chris@82 61 T5 = W[1];
Chris@82 62 T7 = FMA(T5, T6, T4);
Chris@82 63 Tx = FNMS(T5, T3, Tw);
Chris@82 64 Tb = W[7];
Chris@82 65 Td = FMA(Tb, Tc, Ta);
Chris@82 66 Tz = FNMS(Tb, T9, Ty);
Chris@82 67 Te = T7 + Td;
Chris@82 68 TJ = Tx + Tz;
Chris@82 69 }
Chris@82 70 {
Chris@82 71 E Tg, Tj, Th, TB, Tm, Tp, Tn, TD, Tf, Tl, Ti, To;
Chris@82 72 Tg = ri[WS(rs, 2)];
Chris@82 73 Tj = ii[WS(rs, 2)];
Chris@82 74 Tf = W[2];
Chris@82 75 Th = Tf * Tg;
Chris@82 76 TB = Tf * Tj;
Chris@82 77 Tm = ri[WS(rs, 3)];
Chris@82 78 Tp = ii[WS(rs, 3)];
Chris@82 79 Tl = W[4];
Chris@82 80 Tn = Tl * Tm;
Chris@82 81 TD = Tl * Tp;
Chris@82 82 Ti = W[3];
Chris@82 83 Tk = FMA(Ti, Tj, Th);
Chris@82 84 TC = FNMS(Ti, Tg, TB);
Chris@82 85 To = W[5];
Chris@82 86 Tq = FMA(To, Tp, Tn);
Chris@82 87 TE = FNMS(To, Tm, TD);
Chris@82 88 Tr = Tk + Tq;
Chris@82 89 TK = TC + TE;
Chris@82 90 }
Chris@82 91 {
Chris@82 92 E Tu, Ts, Tt, TG, TI, TA, TF, TH, Tv;
Chris@82 93 Tu = Te - Tr;
Chris@82 94 Ts = Te + Tr;
Chris@82 95 Tt = FNMS(KP250000000, Ts, T1);
Chris@82 96 TA = Tx - Tz;
Chris@82 97 TF = TC - TE;
Chris@82 98 TG = FMA(KP618033988, TF, TA);
Chris@82 99 TI = FNMS(KP618033988, TA, TF);
Chris@82 100 ri[0] = T1 + Ts;
Chris@82 101 TH = FNMS(KP559016994, Tu, Tt);
Chris@82 102 ri[WS(rs, 2)] = FNMS(KP951056516, TI, TH);
Chris@82 103 ri[WS(rs, 3)] = FMA(KP951056516, TI, TH);
Chris@82 104 Tv = FMA(KP559016994, Tu, Tt);
Chris@82 105 ri[WS(rs, 4)] = FNMS(KP951056516, TG, Tv);
Chris@82 106 ri[WS(rs, 1)] = FMA(KP951056516, TG, Tv);
Chris@82 107 }
Chris@82 108 {
Chris@82 109 E TO, TL, TN, TS, TU, TQ, TR, TT, TP;
Chris@82 110 TO = TJ - TK;
Chris@82 111 TL = TJ + TK;
Chris@82 112 TN = FNMS(KP250000000, TL, TM);
Chris@82 113 TQ = T7 - Td;
Chris@82 114 TR = Tk - Tq;
Chris@82 115 TS = FMA(KP618033988, TR, TQ);
Chris@82 116 TU = FNMS(KP618033988, TQ, TR);
Chris@82 117 ii[0] = TL + TM;
Chris@82 118 TT = FNMS(KP559016994, TO, TN);
Chris@82 119 ii[WS(rs, 2)] = FMA(KP951056516, TU, TT);
Chris@82 120 ii[WS(rs, 3)] = FNMS(KP951056516, TU, TT);
Chris@82 121 TP = FMA(KP559016994, TO, TN);
Chris@82 122 ii[WS(rs, 1)] = FNMS(KP951056516, TS, TP);
Chris@82 123 ii[WS(rs, 4)] = FMA(KP951056516, TS, TP);
Chris@82 124 }
Chris@82 125 }
Chris@82 126 }
Chris@82 127 }
Chris@82 128
Chris@82 129 static const tw_instr twinstr[] = {
Chris@82 130 {TW_FULL, 0, 5},
Chris@82 131 {TW_NEXT, 1, 0}
Chris@82 132 };
Chris@82 133
Chris@82 134 static const ct_desc desc = { 5, "t1_5", twinstr, &GENUS, {14, 8, 26, 0}, 0, 0, 0 };
Chris@82 135
Chris@82 136 void X(codelet_t1_5) (planner *p) {
Chris@82 137 X(kdft_dit_register) (p, t1_5, &desc);
Chris@82 138 }
Chris@82 139 #else
Chris@82 140
Chris@82 141 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 5 -name t1_5 -include dft/scalar/t.h */
Chris@82 142
Chris@82 143 /*
Chris@82 144 * This function contains 40 FP additions, 28 FP multiplications,
Chris@82 145 * (or, 26 additions, 14 multiplications, 14 fused multiply/add),
Chris@82 146 * 29 stack variables, 4 constants, and 20 memory accesses
Chris@82 147 */
Chris@82 148 #include "dft/scalar/t.h"
Chris@82 149
Chris@82 150 static void t1_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 151 {
Chris@82 152 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@82 153 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@82 154 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@82 155 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@82 156 {
Chris@82 157 INT m;
Chris@82 158 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
Chris@82 159 E T1, TE, Tu, Tx, TJ, TI, TB, TC, TD, Tc, Tn, To;
Chris@82 160 T1 = ri[0];
Chris@82 161 TE = ii[0];
Chris@82 162 {
Chris@82 163 E T6, Ts, Tm, Tw, Tb, Tt, Th, Tv;
Chris@82 164 {
Chris@82 165 E T3, T5, T2, T4;
Chris@82 166 T3 = ri[WS(rs, 1)];
Chris@82 167 T5 = ii[WS(rs, 1)];
Chris@82 168 T2 = W[0];
Chris@82 169 T4 = W[1];
Chris@82 170 T6 = FMA(T2, T3, T4 * T5);
Chris@82 171 Ts = FNMS(T4, T3, T2 * T5);
Chris@82 172 }
Chris@82 173 {
Chris@82 174 E Tj, Tl, Ti, Tk;
Chris@82 175 Tj = ri[WS(rs, 3)];
Chris@82 176 Tl = ii[WS(rs, 3)];
Chris@82 177 Ti = W[4];
Chris@82 178 Tk = W[5];
Chris@82 179 Tm = FMA(Ti, Tj, Tk * Tl);
Chris@82 180 Tw = FNMS(Tk, Tj, Ti * Tl);
Chris@82 181 }
Chris@82 182 {
Chris@82 183 E T8, Ta, T7, T9;
Chris@82 184 T8 = ri[WS(rs, 4)];
Chris@82 185 Ta = ii[WS(rs, 4)];
Chris@82 186 T7 = W[6];
Chris@82 187 T9 = W[7];
Chris@82 188 Tb = FMA(T7, T8, T9 * Ta);
Chris@82 189 Tt = FNMS(T9, T8, T7 * Ta);
Chris@82 190 }
Chris@82 191 {
Chris@82 192 E Te, Tg, Td, Tf;
Chris@82 193 Te = ri[WS(rs, 2)];
Chris@82 194 Tg = ii[WS(rs, 2)];
Chris@82 195 Td = W[2];
Chris@82 196 Tf = W[3];
Chris@82 197 Th = FMA(Td, Te, Tf * Tg);
Chris@82 198 Tv = FNMS(Tf, Te, Td * Tg);
Chris@82 199 }
Chris@82 200 Tu = Ts - Tt;
Chris@82 201 Tx = Tv - Tw;
Chris@82 202 TJ = Th - Tm;
Chris@82 203 TI = T6 - Tb;
Chris@82 204 TB = Ts + Tt;
Chris@82 205 TC = Tv + Tw;
Chris@82 206 TD = TB + TC;
Chris@82 207 Tc = T6 + Tb;
Chris@82 208 Tn = Th + Tm;
Chris@82 209 To = Tc + Tn;
Chris@82 210 }
Chris@82 211 ri[0] = T1 + To;
Chris@82 212 ii[0] = TD + TE;
Chris@82 213 {
Chris@82 214 E Ty, TA, Tr, Tz, Tp, Tq;
Chris@82 215 Ty = FMA(KP951056516, Tu, KP587785252 * Tx);
Chris@82 216 TA = FNMS(KP587785252, Tu, KP951056516 * Tx);
Chris@82 217 Tp = KP559016994 * (Tc - Tn);
Chris@82 218 Tq = FNMS(KP250000000, To, T1);
Chris@82 219 Tr = Tp + Tq;
Chris@82 220 Tz = Tq - Tp;
Chris@82 221 ri[WS(rs, 4)] = Tr - Ty;
Chris@82 222 ri[WS(rs, 3)] = Tz + TA;
Chris@82 223 ri[WS(rs, 1)] = Tr + Ty;
Chris@82 224 ri[WS(rs, 2)] = Tz - TA;
Chris@82 225 }
Chris@82 226 {
Chris@82 227 E TK, TL, TH, TM, TF, TG;
Chris@82 228 TK = FMA(KP951056516, TI, KP587785252 * TJ);
Chris@82 229 TL = FNMS(KP587785252, TI, KP951056516 * TJ);
Chris@82 230 TF = KP559016994 * (TB - TC);
Chris@82 231 TG = FNMS(KP250000000, TD, TE);
Chris@82 232 TH = TF + TG;
Chris@82 233 TM = TG - TF;
Chris@82 234 ii[WS(rs, 1)] = TH - TK;
Chris@82 235 ii[WS(rs, 3)] = TM - TL;
Chris@82 236 ii[WS(rs, 4)] = TK + TH;
Chris@82 237 ii[WS(rs, 2)] = TL + TM;
Chris@82 238 }
Chris@82 239 }
Chris@82 240 }
Chris@82 241 }
Chris@82 242
Chris@82 243 static const tw_instr twinstr[] = {
Chris@82 244 {TW_FULL, 0, 5},
Chris@82 245 {TW_NEXT, 1, 0}
Chris@82 246 };
Chris@82 247
Chris@82 248 static const ct_desc desc = { 5, "t1_5", twinstr, &GENUS, {26, 14, 14, 0}, 0, 0, 0 };
Chris@82 249
Chris@82 250 void X(codelet_t1_5) (planner *p) {
Chris@82 251 X(kdft_dit_register) (p, t1_5, &desc);
Chris@82 252 }
Chris@82 253 #endif