annotate src/fftw-3.3.5/simd-support/simd-avx2.h @ 84:08ae793730bd

Add null config files
author Chris Cannam
date Mon, 02 Mar 2020 14:03:47 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * Modifications by Romain Dolbeau & Erik Lindahl, derived from simd-avx.h
Chris@42 6 * Romain Dolbeau hereby places his modifications in the public domain.
Chris@42 7 * Erik Lindahl hereby places his modifications in the public domain.
Chris@42 8 *
Chris@42 9 * This program is free software; you can redistribute it and/or modify
Chris@42 10 * it under the terms of the GNU General Public License as published by
Chris@42 11 * the Free Software Foundation; either version 2 of the License, or
Chris@42 12 * (at your option) any later version.
Chris@42 13 *
Chris@42 14 * This program is distributed in the hope that it will be useful,
Chris@42 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 17 * GNU General Public License for more details.
Chris@42 18 *
Chris@42 19 * You should have received a copy of the GNU General Public License
Chris@42 20 * along with this program; if not, write to the Free Software
Chris@42 21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 22 *
Chris@42 23 */
Chris@42 24
Chris@42 25 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
Chris@42 26 #error "AVX2 only works in single or double precision"
Chris@42 27 #endif
Chris@42 28
Chris@42 29 #ifdef FFTW_SINGLE
Chris@42 30 # define DS(d,s) s /* single-precision option */
Chris@42 31 # define SUFF(name) name ## s
Chris@42 32 #else
Chris@42 33 # define DS(d,s) d /* double-precision option */
Chris@42 34 # define SUFF(name) name ## d
Chris@42 35 #endif
Chris@42 36
Chris@42 37 #define SIMD_SUFFIX _avx2 /* for renaming */
Chris@42 38 #define VL DS(2, 4) /* SIMD complex vector length */
Chris@42 39 #define SIMD_VSTRIDE_OKA(x) ((x) == 2)
Chris@42 40 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
Chris@42 41
Chris@42 42 #if defined(__GNUC__) && !defined(__AVX2__) /* sanity check */
Chris@42 43 #error "compiling simd-avx2.h without avx2 support"
Chris@42 44 #endif
Chris@42 45
Chris@42 46 #if !defined(HAVE_FMA)
Chris@42 47 #warning "You should probably enable FMAs with --enable-fma for AVX2"
Chris@42 48 #endif
Chris@42 49
Chris@42 50 #ifdef _MSC_VER
Chris@42 51 #ifndef inline
Chris@42 52 #define inline __inline
Chris@42 53 #endif
Chris@42 54 #endif
Chris@42 55
Chris@42 56 #include <immintrin.h>
Chris@42 57
Chris@42 58 typedef DS(__m256d, __m256) V;
Chris@42 59 #define VADD SUFF(_mm256_add_p)
Chris@42 60 #define VSUB SUFF(_mm256_sub_p)
Chris@42 61 #define VMUL SUFF(_mm256_mul_p)
Chris@42 62 #define VXOR SUFF(_mm256_xor_p)
Chris@42 63 #define VSHUF SUFF(_mm256_shuffle_p)
Chris@42 64 #define VPERM1 SUFF(_mm256_permute_p)
Chris@42 65
Chris@42 66 #define SHUFVALD(fp0,fp1) \
Chris@42 67 (((fp1) << 3) | ((fp0) << 2) | ((fp1) << 1) | ((fp0)))
Chris@42 68 #define SHUFVALS(fp0,fp1,fp2,fp3) \
Chris@42 69 (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
Chris@42 70
Chris@42 71 #define VDUPL(x) DS(_mm256_movedup_pd(x), _mm256_moveldup_ps(x))
Chris@42 72 #define VDUPH(x) DS(_mm256_permute_pd(x,SHUFVALD(1,1)), _mm256_movehdup_ps(x))
Chris@42 73
Chris@42 74 #define VLIT(x0, x1) DS(_mm256_set_pd(x0, x1, x0, x1), _mm256_set_ps(x0, x1, x0, x1, x0, x1, x0, x1))
Chris@42 75 #define DVK(var, val) V var = VLIT(val, val)
Chris@42 76 #define LDK(x) x
Chris@42 77
Chris@42 78 static inline V LDA(const R *x, INT ivs, const R *aligned_like)
Chris@42 79 {
Chris@42 80 (void)aligned_like; /* UNUSED */
Chris@42 81 (void)ivs; /* UNUSED */
Chris@42 82 return SUFF(_mm256_loadu_p)(x);
Chris@42 83 }
Chris@42 84
Chris@42 85 static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
Chris@42 86 {
Chris@42 87 (void)aligned_like; /* UNUSED */
Chris@42 88 (void)ovs; /* UNUSED */
Chris@42 89 SUFF(_mm256_storeu_p)(x, v);
Chris@42 90 }
Chris@42 91
Chris@42 92 #if FFTW_SINGLE
Chris@42 93
Chris@42 94 #define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr))
Chris@42 95 #define LOADL(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr))
Chris@42 96 #define STOREH(addr, val) _mm_storeh_pi((__m64 *)(addr), val)
Chris@42 97 #define STOREL(addr, val) _mm_storel_pi((__m64 *)(addr), val)
Chris@42 98
Chris@42 99 static inline V LD(const R *x, INT ivs, const R *aligned_like)
Chris@42 100 {
Chris@42 101 __m128 l0, l1, h0, h1;
Chris@42 102 (void)aligned_like; /* UNUSED */
Chris@42 103 #if defined(__ICC) || (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ > 8)
Chris@42 104 l0 = LOADL(x, SUFF(_mm_undefined_p)());
Chris@42 105 l1 = LOADL(x + ivs, SUFF(_mm_undefined_p)());
Chris@42 106 h0 = LOADL(x + 2*ivs, SUFF(_mm_undefined_p)());
Chris@42 107 h1 = LOADL(x + 3*ivs, SUFF(_mm_undefined_p)());
Chris@42 108 #else
Chris@42 109 l0 = LOADL(x, l0);
Chris@42 110 l1 = LOADL(x + ivs, l1);
Chris@42 111 h0 = LOADL(x + 2*ivs, h0);
Chris@42 112 h1 = LOADL(x + 3*ivs, h1);
Chris@42 113 #endif
Chris@42 114 l0 = SUFF(_mm_movelh_p)(l0,l1);
Chris@42 115 h0 = SUFF(_mm_movelh_p)(h0,h1);
Chris@42 116 return _mm256_insertf128_ps(_mm256_castps128_ps256(l0), h0, 1);
Chris@42 117 }
Chris@42 118
Chris@42 119 static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
Chris@42 120 {
Chris@42 121 __m128 h = _mm256_extractf128_ps(v, 1);
Chris@42 122 __m128 l = _mm256_castps256_ps128(v);
Chris@42 123 (void)aligned_like; /* UNUSED */
Chris@42 124 /* WARNING: the extra_iter hack depends upon STOREL occurring
Chris@42 125 after STOREH */
Chris@42 126 STOREH(x + 3*ovs, h);
Chris@42 127 STOREL(x + 2*ovs, h);
Chris@42 128 STOREH(x + ovs, l);
Chris@42 129 STOREL(x, l);
Chris@42 130 }
Chris@42 131
Chris@42 132 #define STM2(x, v, ovs, aligned_like) /* no-op */
Chris@42 133 static inline void STN2(R *x, V v0, V v1, INT ovs)
Chris@42 134 {
Chris@42 135 V x0 = VSHUF(v0, v1, SHUFVALS(0, 1, 0, 1));
Chris@42 136 V x1 = VSHUF(v0, v1, SHUFVALS(2, 3, 2, 3));
Chris@42 137 __m128 h0 = _mm256_extractf128_ps(x0, 1);
Chris@42 138 __m128 l0 = _mm256_castps256_ps128(x0);
Chris@42 139 __m128 h1 = _mm256_extractf128_ps(x1, 1);
Chris@42 140 __m128 l1 = _mm256_castps256_ps128(x1);
Chris@42 141 *(__m128 *)(x + 3*ovs) = h1;
Chris@42 142 *(__m128 *)(x + 2*ovs) = h0;
Chris@42 143 *(__m128 *)(x + 1*ovs) = l1;
Chris@42 144 *(__m128 *)(x + 0*ovs) = l0;
Chris@42 145 }
Chris@42 146
Chris@42 147 #define STM4(x, v, ovs, aligned_like) /* no-op */
Chris@42 148 #define STN4(x, v0, v1, v2, v3, ovs) \
Chris@42 149 { \
Chris@42 150 V xxx0, xxx1, xxx2, xxx3; \
Chris@42 151 V yyy0, yyy1, yyy2, yyy3; \
Chris@42 152 xxx0 = _mm256_unpacklo_ps(v0, v2); \
Chris@42 153 xxx1 = _mm256_unpackhi_ps(v0, v2); \
Chris@42 154 xxx2 = _mm256_unpacklo_ps(v1, v3); \
Chris@42 155 xxx3 = _mm256_unpackhi_ps(v1, v3); \
Chris@42 156 yyy0 = _mm256_unpacklo_ps(xxx0, xxx2); \
Chris@42 157 yyy1 = _mm256_unpackhi_ps(xxx0, xxx2); \
Chris@42 158 yyy2 = _mm256_unpacklo_ps(xxx1, xxx3); \
Chris@42 159 yyy3 = _mm256_unpackhi_ps(xxx1, xxx3); \
Chris@42 160 *(__m128 *)(x + 0 * ovs) = _mm256_castps256_ps128(yyy0); \
Chris@42 161 *(__m128 *)(x + 4 * ovs) = _mm256_extractf128_ps(yyy0, 1); \
Chris@42 162 *(__m128 *)(x + 1 * ovs) = _mm256_castps256_ps128(yyy1); \
Chris@42 163 *(__m128 *)(x + 5 * ovs) = _mm256_extractf128_ps(yyy1, 1); \
Chris@42 164 *(__m128 *)(x + 2 * ovs) = _mm256_castps256_ps128(yyy2); \
Chris@42 165 *(__m128 *)(x + 6 * ovs) = _mm256_extractf128_ps(yyy2, 1); \
Chris@42 166 *(__m128 *)(x + 3 * ovs) = _mm256_castps256_ps128(yyy3); \
Chris@42 167 *(__m128 *)(x + 7 * ovs) = _mm256_extractf128_ps(yyy3, 1); \
Chris@42 168 }
Chris@42 169
Chris@42 170 #else
Chris@42 171 static inline __m128d VMOVAPD_LD(const R *x)
Chris@42 172 {
Chris@42 173 /* gcc-4.6 miscompiles the combination _mm256_castpd128_pd256(VMOVAPD_LD(x))
Chris@42 174 into a 256-bit vmovapd, which requires 32-byte aligment instead of
Chris@42 175 16-byte alignment.
Chris@42 176
Chris@42 177 Force the use of vmovapd via asm until compilers stabilize.
Chris@42 178 */
Chris@42 179 #if defined(__GNUC__)
Chris@42 180 __m128d var;
Chris@42 181 __asm__("vmovapd %1, %0\n" : "=x"(var) : "m"(x[0]));
Chris@42 182 return var;
Chris@42 183 #else
Chris@42 184 return *(const __m128d *)x;
Chris@42 185 #endif
Chris@42 186 }
Chris@42 187
Chris@42 188 static inline V LD(const R *x, INT ivs, const R *aligned_like)
Chris@42 189 {
Chris@42 190 V var;
Chris@42 191 (void)aligned_like; /* UNUSED */
Chris@42 192 var = _mm256_castpd128_pd256(VMOVAPD_LD(x));
Chris@42 193 var = _mm256_insertf128_pd(var, *(const __m128d *)(x+ivs), 1);
Chris@42 194 return var;
Chris@42 195 }
Chris@42 196
Chris@42 197 static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
Chris@42 198 {
Chris@42 199 (void)aligned_like; /* UNUSED */
Chris@42 200 /* WARNING: the extra_iter hack depends upon the store of the low
Chris@42 201 part occurring after the store of the high part */
Chris@42 202 *(__m128d *)(x + ovs) = _mm256_extractf128_pd(v, 1);
Chris@42 203 *(__m128d *)x = _mm256_castpd256_pd128(v);
Chris@42 204 }
Chris@42 205
Chris@42 206
Chris@42 207 #define STM2 ST
Chris@42 208 #define STN2(x, v0, v1, ovs) /* nop */
Chris@42 209 #define STM4(x, v, ovs, aligned_like) /* no-op */
Chris@42 210
Chris@42 211 /* STN4 is a macro, not a function, thanks to Visual C++ developers
Chris@42 212 deciding "it would be infrequent that people would want to pass more
Chris@42 213 than 3 [__m128 parameters] by value." Even though the comment
Chris@42 214 was made about __m128 parameters, it appears to apply to __m256
Chris@42 215 parameters as well. */
Chris@42 216 #define STN4(x, v0, v1, v2, v3, ovs) \
Chris@42 217 { \
Chris@42 218 V xxx0, xxx1, xxx2, xxx3; \
Chris@42 219 xxx0 = _mm256_unpacklo_pd(v0, v1); \
Chris@42 220 xxx1 = _mm256_unpackhi_pd(v0, v1); \
Chris@42 221 xxx2 = _mm256_unpacklo_pd(v2, v3); \
Chris@42 222 xxx3 = _mm256_unpackhi_pd(v2, v3); \
Chris@42 223 STA(x, _mm256_permute2f128_pd(xxx0, xxx2, 0x20), 0, 0); \
Chris@42 224 STA(x + ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x20), 0, 0); \
Chris@42 225 STA(x + 2 * ovs, _mm256_permute2f128_pd(xxx0, xxx2, 0x31), 0, 0); \
Chris@42 226 STA(x + 3 * ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x31), 0, 0); \
Chris@42 227 }
Chris@42 228 #endif
Chris@42 229
Chris@42 230 static inline V FLIP_RI(V x)
Chris@42 231 {
Chris@42 232 return VPERM1(x, DS(SHUFVALD(1, 0), SHUFVALS(1, 0, 3, 2)));
Chris@42 233 }
Chris@42 234
Chris@42 235 static inline V VCONJ(V x)
Chris@42 236 {
Chris@42 237 V pmpm = VLIT(-0.0, 0.0);
Chris@42 238 return VXOR(pmpm, x);
Chris@42 239 }
Chris@42 240
Chris@42 241 static inline V VBYI(V x)
Chris@42 242 {
Chris@42 243 return FLIP_RI(VCONJ(x));
Chris@42 244 }
Chris@42 245
Chris@42 246 /* FMA support */
Chris@42 247 #define VFMA SUFF(_mm256_fmadd_p)
Chris@42 248 #define VFNMS SUFF(_mm256_fnmadd_p)
Chris@42 249 #define VFMS SUFF(_mm256_fmsub_p)
Chris@42 250 #define VFMAI(b, c) SUFF(_mm256_addsub_p)(c, FLIP_RI(b)) /* VADD(c, VBYI(b)) */
Chris@42 251 #define VFNMSI(b, c) VSUB(c, VBYI(b))
Chris@42 252 #define VFMACONJ(b,c) VADD(VCONJ(b),c)
Chris@42 253 #define VFMSCONJ(b,c) VSUB(VCONJ(b),c)
Chris@42 254 #define VFNMSCONJ(b,c) SUFF(_mm256_addsub_p)(c, b) /* VSUB(c, VCONJ(b)) */
Chris@42 255
Chris@42 256 static inline V VZMUL(V tx, V sr)
Chris@42 257 {
Chris@42 258 /* V tr = VDUPL(tx); */
Chris@42 259 /* V ti = VDUPH(tx); */
Chris@42 260 /* tr = VMUL(sr, tr); */
Chris@42 261 /* sr = VBYI(sr); */
Chris@42 262 /* return VFMA(ti, sr, tr); */
Chris@42 263 return SUFF(_mm256_fmaddsub_p)(sr, VDUPL(tx), VMUL(FLIP_RI(sr), VDUPH(tx)));
Chris@42 264 }
Chris@42 265
Chris@42 266 static inline V VZMULJ(V tx, V sr)
Chris@42 267 {
Chris@42 268 /* V tr = VDUPL(tx); */
Chris@42 269 /* V ti = VDUPH(tx); */
Chris@42 270 /* tr = VMUL(sr, tr); */
Chris@42 271 /* sr = VBYI(sr); */
Chris@42 272 /* return VFNMS(ti, sr, tr); */
Chris@42 273 return SUFF(_mm256_fmsubadd_p)(sr, VDUPL(tx), VMUL(FLIP_RI(sr), VDUPH(tx)));
Chris@42 274 }
Chris@42 275
Chris@42 276 static inline V VZMULI(V tx, V sr)
Chris@42 277 {
Chris@42 278 V tr = VDUPL(tx);
Chris@42 279 V ti = VDUPH(tx);
Chris@42 280 ti = VMUL(ti, sr);
Chris@42 281 sr = VBYI(sr);
Chris@42 282 return VFMS(tr, sr, ti);
Chris@42 283 /*
Chris@42 284 * Keep the old version
Chris@42 285 * (2 permute, 1 shuffle, 1 constant load (L1), 1 xor, 2 fp), since the below FMA one
Chris@42 286 * would be 2 permute, 1 shuffle, 1 xor (setzero), 3 fp), but with a longer pipeline.
Chris@42 287 *
Chris@42 288 * Alternative new fma version:
Chris@42 289 * return SUFF(_mm256_addsub_p)(SUFF(_mm256_fnmadd_p)(sr, VDUPH(tx), SUFF(_mm256_setzero_p)()),
Chris@42 290 * VMUL(FLIP_RI(sr), VDUPL(tx)));
Chris@42 291 */
Chris@42 292 }
Chris@42 293
Chris@42 294 static inline V VZMULIJ(V tx, V sr)
Chris@42 295 {
Chris@42 296 /* V tr = VDUPL(tx); */
Chris@42 297 /* V ti = VDUPH(tx); */
Chris@42 298 /* ti = VMUL(ti, sr); */
Chris@42 299 /* sr = VBYI(sr); */
Chris@42 300 /* return VFMA(tr, sr, ti); */
Chris@42 301 return SUFF(_mm256_fmaddsub_p)(sr, VDUPH(tx), VMUL(FLIP_RI(sr), VDUPL(tx)));
Chris@42 302 }
Chris@42 303
Chris@42 304 /* twiddle storage #1: compact, slower */
Chris@42 305 #ifdef FFTW_SINGLE
Chris@42 306 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}, {TW_CEXP, v+2, x}, {TW_CEXP, v+3, x}
Chris@42 307 #else
Chris@42 308 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
Chris@42 309 #endif
Chris@42 310 #define TWVL1 (VL)
Chris@42 311
Chris@42 312 static inline V BYTW1(const R *t, V sr)
Chris@42 313 {
Chris@42 314 return VZMUL(LDA(t, 2, t), sr);
Chris@42 315 }
Chris@42 316
Chris@42 317 static inline V BYTWJ1(const R *t, V sr)
Chris@42 318 {
Chris@42 319 return VZMULJ(LDA(t, 2, t), sr);
Chris@42 320 }
Chris@42 321
Chris@42 322 /* twiddle storage #2: twice the space, faster (when in cache) */
Chris@42 323 #ifdef FFTW_SINGLE
Chris@42 324 # define VTW2(v,x) \
Chris@42 325 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
Chris@42 326 {TW_COS, v+2, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, {TW_COS, v+3, x}, \
Chris@42 327 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}, \
Chris@42 328 {TW_SIN, v+2, -x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, -x}, {TW_SIN, v+3, x}
Chris@42 329 #else
Chris@42 330 # define VTW2(v,x) \
Chris@42 331 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
Chris@42 332 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
Chris@42 333 #endif
Chris@42 334 #define TWVL2 (2 * VL)
Chris@42 335
Chris@42 336 static inline V BYTW2(const R *t, V sr)
Chris@42 337 {
Chris@42 338 const V *twp = (const V *)t;
Chris@42 339 V si = FLIP_RI(sr);
Chris@42 340 V tr = twp[0], ti = twp[1];
Chris@42 341 return VFMA(tr, sr, VMUL(ti, si));
Chris@42 342 }
Chris@42 343
Chris@42 344 static inline V BYTWJ2(const R *t, V sr)
Chris@42 345 {
Chris@42 346 const V *twp = (const V *)t;
Chris@42 347 V si = FLIP_RI(sr);
Chris@42 348 V tr = twp[0], ti = twp[1];
Chris@42 349 return VFNMS(ti, si, VMUL(tr, sr));
Chris@42 350 }
Chris@42 351
Chris@42 352 /* twiddle storage #3 */
Chris@42 353 #define VTW3 VTW1
Chris@42 354 #define TWVL3 TWVL1
Chris@42 355
Chris@42 356 /* twiddle storage for split arrays */
Chris@42 357 #ifdef FFTW_SINGLE
Chris@42 358 # define VTWS(v,x) \
Chris@42 359 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
Chris@42 360 {TW_COS, v+4, x}, {TW_COS, v+5, x}, {TW_COS, v+6, x}, {TW_COS, v+7, x}, \
Chris@42 361 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}, \
Chris@42 362 {TW_SIN, v+4, x}, {TW_SIN, v+5, x}, {TW_SIN, v+6, x}, {TW_SIN, v+7, x}
Chris@42 363 #else
Chris@42 364 # define VTWS(v,x) \
Chris@42 365 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
Chris@42 366 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
Chris@42 367 #endif
Chris@42 368 #define TWVLS (2 * VL)
Chris@42 369
Chris@42 370 #define VLEAVE _mm256_zeroupper
Chris@42 371
Chris@42 372 #include "simd-common.h"