annotate src/fftw-3.3.5/libbench2/verify-lib.c @ 84:08ae793730bd

Add null config files
author Chris Cannam
date Mon, 02 Mar 2020 14:03:47 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21
Chris@42 22 #include "verify.h"
Chris@42 23 #include <math.h>
Chris@42 24 #include <stdlib.h>
Chris@42 25 #include <stdio.h>
Chris@42 26
Chris@42 27 /*
Chris@42 28 * Utility functions:
Chris@42 29 */
Chris@42 30 static double dabs(double x) { return (x < 0.0) ? -x : x; }
Chris@42 31 static double dmin(double x, double y) { return (x < y) ? x : y; }
Chris@42 32 static double norm2(double x, double y) { return dmax(dabs(x), dabs(y)); }
Chris@42 33
Chris@42 34 double dmax(double x, double y) { return (x > y) ? x : y; }
Chris@42 35
Chris@42 36 static double aerror(C *a, C *b, int n)
Chris@42 37 {
Chris@42 38 if (n > 0) {
Chris@42 39 /* compute the relative Linf error */
Chris@42 40 double e = 0.0, mag = 0.0;
Chris@42 41 int i;
Chris@42 42
Chris@42 43 for (i = 0; i < n; ++i) {
Chris@42 44 e = dmax(e, norm2(c_re(a[i]) - c_re(b[i]),
Chris@42 45 c_im(a[i]) - c_im(b[i])));
Chris@42 46 mag = dmax(mag,
Chris@42 47 dmin(norm2(c_re(a[i]), c_im(a[i])),
Chris@42 48 norm2(c_re(b[i]), c_im(b[i]))));
Chris@42 49 }
Chris@42 50 e /= mag;
Chris@42 51
Chris@42 52 #ifdef HAVE_ISNAN
Chris@42 53 BENCH_ASSERT(!isnan(e));
Chris@42 54 #endif
Chris@42 55 return e;
Chris@42 56 } else
Chris@42 57 return 0.0;
Chris@42 58 }
Chris@42 59
Chris@42 60 #ifdef HAVE_DRAND48
Chris@42 61 # if defined(HAVE_DECL_DRAND48) && !HAVE_DECL_DRAND48
Chris@42 62 extern double drand48(void);
Chris@42 63 # endif
Chris@42 64 double mydrand(void)
Chris@42 65 {
Chris@42 66 return drand48() - 0.5;
Chris@42 67 }
Chris@42 68 #else
Chris@42 69 double mydrand(void)
Chris@42 70 {
Chris@42 71 double d = rand();
Chris@42 72 return (d / (double) RAND_MAX) - 0.5;
Chris@42 73 }
Chris@42 74 #endif
Chris@42 75
Chris@42 76 void arand(C *a, int n)
Chris@42 77 {
Chris@42 78 int i;
Chris@42 79
Chris@42 80 /* generate random inputs */
Chris@42 81 for (i = 0; i < n; ++i) {
Chris@42 82 c_re(a[i]) = mydrand();
Chris@42 83 c_im(a[i]) = mydrand();
Chris@42 84 }
Chris@42 85 }
Chris@42 86
Chris@42 87 /* make array real */
Chris@42 88 void mkreal(C *A, int n)
Chris@42 89 {
Chris@42 90 int i;
Chris@42 91
Chris@42 92 for (i = 0; i < n; ++i) {
Chris@42 93 c_im(A[i]) = 0.0;
Chris@42 94 }
Chris@42 95 }
Chris@42 96
Chris@42 97 static void assign_conj(C *Ac, C *A, int rank, const bench_iodim *dim, int stride)
Chris@42 98 {
Chris@42 99 if (rank == 0) {
Chris@42 100 c_re(*Ac) = c_re(*A);
Chris@42 101 c_im(*Ac) = -c_im(*A);
Chris@42 102 }
Chris@42 103 else {
Chris@42 104 int i, n0 = dim[rank - 1].n, s = stride;
Chris@42 105 rank -= 1;
Chris@42 106 stride *= n0;
Chris@42 107 assign_conj(Ac, A, rank, dim, stride);
Chris@42 108 for (i = 1; i < n0; ++i)
Chris@42 109 assign_conj(Ac + (n0 - i) * s, A + i * s, rank, dim, stride);
Chris@42 110 }
Chris@42 111 }
Chris@42 112
Chris@42 113 /* make array hermitian */
Chris@42 114 void mkhermitian(C *A, int rank, const bench_iodim *dim, int stride)
Chris@42 115 {
Chris@42 116 if (rank == 0)
Chris@42 117 c_im(*A) = 0.0;
Chris@42 118 else {
Chris@42 119 int i, n0 = dim[rank - 1].n, s = stride;
Chris@42 120 rank -= 1;
Chris@42 121 stride *= n0;
Chris@42 122 mkhermitian(A, rank, dim, stride);
Chris@42 123 for (i = 1; 2*i < n0; ++i)
Chris@42 124 assign_conj(A + (n0 - i) * s, A + i * s, rank, dim, stride);
Chris@42 125 if (2*i == n0)
Chris@42 126 mkhermitian(A + i * s, rank, dim, stride);
Chris@42 127 }
Chris@42 128 }
Chris@42 129
Chris@42 130 void mkhermitian1(C *a, int n)
Chris@42 131 {
Chris@42 132 bench_iodim d;
Chris@42 133
Chris@42 134 d.n = n;
Chris@42 135 d.is = d.os = 1;
Chris@42 136 mkhermitian(a, 1, &d, 1);
Chris@42 137 }
Chris@42 138
Chris@42 139 /* C = A */
Chris@42 140 void acopy(C *c, C *a, int n)
Chris@42 141 {
Chris@42 142 int i;
Chris@42 143
Chris@42 144 for (i = 0; i < n; ++i) {
Chris@42 145 c_re(c[i]) = c_re(a[i]);
Chris@42 146 c_im(c[i]) = c_im(a[i]);
Chris@42 147 }
Chris@42 148 }
Chris@42 149
Chris@42 150 /* C = A + B */
Chris@42 151 void aadd(C *c, C *a, C *b, int n)
Chris@42 152 {
Chris@42 153 int i;
Chris@42 154
Chris@42 155 for (i = 0; i < n; ++i) {
Chris@42 156 c_re(c[i]) = c_re(a[i]) + c_re(b[i]);
Chris@42 157 c_im(c[i]) = c_im(a[i]) + c_im(b[i]);
Chris@42 158 }
Chris@42 159 }
Chris@42 160
Chris@42 161 /* C = A - B */
Chris@42 162 void asub(C *c, C *a, C *b, int n)
Chris@42 163 {
Chris@42 164 int i;
Chris@42 165
Chris@42 166 for (i = 0; i < n; ++i) {
Chris@42 167 c_re(c[i]) = c_re(a[i]) - c_re(b[i]);
Chris@42 168 c_im(c[i]) = c_im(a[i]) - c_im(b[i]);
Chris@42 169 }
Chris@42 170 }
Chris@42 171
Chris@42 172 /* B = rotate left A (complex) */
Chris@42 173 void arol(C *b, C *a, int n, int nb, int na)
Chris@42 174 {
Chris@42 175 int i, ib, ia;
Chris@42 176
Chris@42 177 for (ib = 0; ib < nb; ++ib) {
Chris@42 178 for (i = 0; i < n - 1; ++i)
Chris@42 179 for (ia = 0; ia < na; ++ia) {
Chris@42 180 C *pb = b + (ib * n + i) * na + ia;
Chris@42 181 C *pa = a + (ib * n + i + 1) * na + ia;
Chris@42 182 c_re(*pb) = c_re(*pa);
Chris@42 183 c_im(*pb) = c_im(*pa);
Chris@42 184 }
Chris@42 185
Chris@42 186 for (ia = 0; ia < na; ++ia) {
Chris@42 187 C *pb = b + (ib * n + n - 1) * na + ia;
Chris@42 188 C *pa = a + ib * n * na + ia;
Chris@42 189 c_re(*pb) = c_re(*pa);
Chris@42 190 c_im(*pb) = c_im(*pa);
Chris@42 191 }
Chris@42 192 }
Chris@42 193 }
Chris@42 194
Chris@42 195 void aphase_shift(C *b, C *a, int n, int nb, int na, double sign)
Chris@42 196 {
Chris@42 197 int j, jb, ja;
Chris@42 198 trigreal twopin;
Chris@42 199 twopin = K2PI / n;
Chris@42 200
Chris@42 201 for (jb = 0; jb < nb; ++jb)
Chris@42 202 for (j = 0; j < n; ++j) {
Chris@42 203 trigreal s = sign * SIN(j * twopin);
Chris@42 204 trigreal c = COS(j * twopin);
Chris@42 205
Chris@42 206 for (ja = 0; ja < na; ++ja) {
Chris@42 207 int k = (jb * n + j) * na + ja;
Chris@42 208 c_re(b[k]) = c_re(a[k]) * c - c_im(a[k]) * s;
Chris@42 209 c_im(b[k]) = c_re(a[k]) * s + c_im(a[k]) * c;
Chris@42 210 }
Chris@42 211 }
Chris@42 212 }
Chris@42 213
Chris@42 214 /* A = alpha * A (complex, in place) */
Chris@42 215 void ascale(C *a, C alpha, int n)
Chris@42 216 {
Chris@42 217 int i;
Chris@42 218
Chris@42 219 for (i = 0; i < n; ++i) {
Chris@42 220 R xr = c_re(a[i]), xi = c_im(a[i]);
Chris@42 221 c_re(a[i]) = xr * c_re(alpha) - xi * c_im(alpha);
Chris@42 222 c_im(a[i]) = xr * c_im(alpha) + xi * c_re(alpha);
Chris@42 223 }
Chris@42 224 }
Chris@42 225
Chris@42 226
Chris@42 227 double acmp(C *a, C *b, int n, const char *test, double tol)
Chris@42 228 {
Chris@42 229 double d = aerror(a, b, n);
Chris@42 230 if (d > tol) {
Chris@42 231 ovtpvt_err("Found relative error %e (%s)\n", d, test);
Chris@42 232
Chris@42 233 {
Chris@42 234 int i, N;
Chris@42 235 N = n > 300 && verbose <= 2 ? 300 : n;
Chris@42 236 for (i = 0; i < N; ++i)
Chris@42 237 ovtpvt_err("%8d %16.12f %16.12f %16.12f %16.12f\n", i,
Chris@42 238 (double) c_re(a[i]), (double) c_im(a[i]),
Chris@42 239 (double) c_re(b[i]), (double) c_im(b[i]));
Chris@42 240 }
Chris@42 241
Chris@42 242 bench_exit(EXIT_FAILURE);
Chris@42 243 }
Chris@42 244 return d;
Chris@42 245 }
Chris@42 246
Chris@42 247
Chris@42 248 /*
Chris@42 249 * Implementation of the FFT tester described in
Chris@42 250 *
Chris@42 251 * Funda Ergün. Testing multivariate linear functions: Overcoming the
Chris@42 252 * generator bottleneck. In Proceedings of the Twenty-Seventh Annual
Chris@42 253 * ACM Symposium on the Theory of Computing, pages 407-416, Las Vegas,
Chris@42 254 * Nevada, 29 May--1 June 1995.
Chris@42 255 *
Chris@42 256 * Also: F. Ergun, S. R. Kumar, and D. Sivakumar, "Self-testing without
Chris@42 257 * the generator bottleneck," SIAM J. on Computing 29 (5), 1630-51 (2000).
Chris@42 258 */
Chris@42 259
Chris@42 260 static double impulse0(dofft_closure *k,
Chris@42 261 int n, int vecn,
Chris@42 262 C *inA, C *inB, C *inC,
Chris@42 263 C *outA, C *outB, C *outC,
Chris@42 264 C *tmp, int rounds, double tol)
Chris@42 265 {
Chris@42 266 int N = n * vecn;
Chris@42 267 double e = 0.0;
Chris@42 268 int j;
Chris@42 269
Chris@42 270 k->apply(k, inA, tmp);
Chris@42 271 e = dmax(e, acmp(tmp, outA, N, "impulse 1", tol));
Chris@42 272
Chris@42 273 for (j = 0; j < rounds; ++j) {
Chris@42 274 arand(inB, N);
Chris@42 275 asub(inC, inA, inB, N);
Chris@42 276 k->apply(k, inB, outB);
Chris@42 277 k->apply(k, inC, outC);
Chris@42 278 aadd(tmp, outB, outC, N);
Chris@42 279 e = dmax(e, acmp(tmp, outA, N, "impulse", tol));
Chris@42 280 }
Chris@42 281 return e;
Chris@42 282 }
Chris@42 283
Chris@42 284 double impulse(dofft_closure *k,
Chris@42 285 int n, int vecn,
Chris@42 286 C *inA, C *inB, C *inC,
Chris@42 287 C *outA, C *outB, C *outC,
Chris@42 288 C *tmp, int rounds, double tol)
Chris@42 289 {
Chris@42 290 int i, j;
Chris@42 291 double e = 0.0;
Chris@42 292
Chris@42 293 /* check impulsive input */
Chris@42 294 for (i = 0; i < vecn; ++i) {
Chris@42 295 R x = (sqrt(n)*(i+1)) / (double)(vecn+1);
Chris@42 296 for (j = 0; j < n; ++j) {
Chris@42 297 c_re(inA[j + i * n]) = 0;
Chris@42 298 c_im(inA[j + i * n]) = 0;
Chris@42 299 c_re(outA[j + i * n]) = x;
Chris@42 300 c_im(outA[j + i * n]) = 0;
Chris@42 301 }
Chris@42 302 c_re(inA[i * n]) = x;
Chris@42 303 c_im(inA[i * n]) = 0;
Chris@42 304 }
Chris@42 305
Chris@42 306 e = dmax(e, impulse0(k, n, vecn, inA, inB, inC, outA, outB, outC,
Chris@42 307 tmp, rounds, tol));
Chris@42 308
Chris@42 309 /* check constant input */
Chris@42 310 for (i = 0; i < vecn; ++i) {
Chris@42 311 R x = (i+1) / ((double)(vecn+1) * sqrt(n));
Chris@42 312 for (j = 0; j < n; ++j) {
Chris@42 313 c_re(inA[j + i * n]) = x;
Chris@42 314 c_im(inA[j + i * n]) = 0;
Chris@42 315 c_re(outA[j + i * n]) = 0;
Chris@42 316 c_im(outA[j + i * n]) = 0;
Chris@42 317 }
Chris@42 318 c_re(outA[i * n]) = n * x;
Chris@42 319 c_im(outA[i * n]) = 0;
Chris@42 320 }
Chris@42 321
Chris@42 322 e = dmax(e, impulse0(k, n, vecn, inA, inB, inC, outA, outB, outC,
Chris@42 323 tmp, rounds, tol));
Chris@42 324 return e;
Chris@42 325 }
Chris@42 326
Chris@42 327 double linear(dofft_closure *k, int realp,
Chris@42 328 int n, C *inA, C *inB, C *inC, C *outA,
Chris@42 329 C *outB, C *outC, C *tmp, int rounds, double tol)
Chris@42 330 {
Chris@42 331 int j;
Chris@42 332 double e = 0.0;
Chris@42 333
Chris@42 334 for (j = 0; j < rounds; ++j) {
Chris@42 335 C alpha, beta;
Chris@42 336 c_re(alpha) = mydrand();
Chris@42 337 c_im(alpha) = realp ? 0.0 : mydrand();
Chris@42 338 c_re(beta) = mydrand();
Chris@42 339 c_im(beta) = realp ? 0.0 : mydrand();
Chris@42 340 arand(inA, n);
Chris@42 341 arand(inB, n);
Chris@42 342 k->apply(k, inA, outA);
Chris@42 343 k->apply(k, inB, outB);
Chris@42 344
Chris@42 345 ascale(outA, alpha, n);
Chris@42 346 ascale(outB, beta, n);
Chris@42 347 aadd(tmp, outA, outB, n);
Chris@42 348 ascale(inA, alpha, n);
Chris@42 349 ascale(inB, beta, n);
Chris@42 350 aadd(inC, inA, inB, n);
Chris@42 351 k->apply(k, inC, outC);
Chris@42 352
Chris@42 353 e = dmax(e, acmp(outC, tmp, n, "linear", tol));
Chris@42 354 }
Chris@42 355 return e;
Chris@42 356 }
Chris@42 357
Chris@42 358
Chris@42 359
Chris@42 360 double tf_shift(dofft_closure *k,
Chris@42 361 int realp, const bench_tensor *sz,
Chris@42 362 int n, int vecn, double sign,
Chris@42 363 C *inA, C *inB, C *outA, C *outB, C *tmp,
Chris@42 364 int rounds, double tol, int which_shift)
Chris@42 365 {
Chris@42 366 int nb, na, dim, N = n * vecn;
Chris@42 367 int i, j;
Chris@42 368 double e = 0.0;
Chris@42 369
Chris@42 370 /* test 3: check the time-shift property */
Chris@42 371 /* the paper performs more tests, but this code should be fine too */
Chris@42 372
Chris@42 373 nb = 1;
Chris@42 374 na = n;
Chris@42 375
Chris@42 376 /* check shifts across all SZ dimensions */
Chris@42 377 for (dim = 0; dim < sz->rnk; ++dim) {
Chris@42 378 int ncur = sz->dims[dim].n;
Chris@42 379
Chris@42 380 na /= ncur;
Chris@42 381
Chris@42 382 for (j = 0; j < rounds; ++j) {
Chris@42 383 arand(inA, N);
Chris@42 384
Chris@42 385 if (which_shift == TIME_SHIFT) {
Chris@42 386 for (i = 0; i < vecn; ++i) {
Chris@42 387 if (realp) mkreal(inA + i * n, n);
Chris@42 388 arol(inB + i * n, inA + i * n, ncur, nb, na);
Chris@42 389 }
Chris@42 390 k->apply(k, inA, outA);
Chris@42 391 k->apply(k, inB, outB);
Chris@42 392 for (i = 0; i < vecn; ++i)
Chris@42 393 aphase_shift(tmp + i * n, outB + i * n, ncur,
Chris@42 394 nb, na, sign);
Chris@42 395 e = dmax(e, acmp(tmp, outA, N, "time shift", tol));
Chris@42 396 } else {
Chris@42 397 for (i = 0; i < vecn; ++i) {
Chris@42 398 if (realp)
Chris@42 399 mkhermitian(inA + i * n, sz->rnk, sz->dims, 1);
Chris@42 400 aphase_shift(inB + i * n, inA + i * n, ncur,
Chris@42 401 nb, na, -sign);
Chris@42 402 }
Chris@42 403 k->apply(k, inA, outA);
Chris@42 404 k->apply(k, inB, outB);
Chris@42 405 for (i = 0; i < vecn; ++i)
Chris@42 406 arol(tmp + i * n, outB + i * n, ncur, nb, na);
Chris@42 407 e = dmax(e, acmp(tmp, outA, N, "freq shift", tol));
Chris@42 408 }
Chris@42 409 }
Chris@42 410
Chris@42 411 nb *= ncur;
Chris@42 412 }
Chris@42 413 return e;
Chris@42 414 }
Chris@42 415
Chris@42 416
Chris@42 417 void preserves_input(dofft_closure *k, aconstrain constrain,
Chris@42 418 int n, C *inA, C *inB, C *outB, int rounds)
Chris@42 419 {
Chris@42 420 int j;
Chris@42 421 int recopy_input = k->recopy_input;
Chris@42 422
Chris@42 423 k->recopy_input = 1;
Chris@42 424 for (j = 0; j < rounds; ++j) {
Chris@42 425 arand(inA, n);
Chris@42 426 if (constrain)
Chris@42 427 constrain(inA, n);
Chris@42 428
Chris@42 429 acopy(inB, inA, n);
Chris@42 430 k->apply(k, inB, outB);
Chris@42 431 acmp(inB, inA, n, "preserves_input", 0.0);
Chris@42 432 }
Chris@42 433 k->recopy_input = recopy_input;
Chris@42 434 }
Chris@42 435
Chris@42 436
Chris@42 437 /* Make a copy of the size tensor, with the same dimensions, but with
Chris@42 438 the strides corresponding to a "packed" row-major array with the
Chris@42 439 given stride. */
Chris@42 440 bench_tensor *verify_pack(const bench_tensor *sz, int s)
Chris@42 441 {
Chris@42 442 bench_tensor *x = tensor_copy(sz);
Chris@42 443 if (BENCH_FINITE_RNK(x->rnk) && x->rnk > 0) {
Chris@42 444 int i;
Chris@42 445 x->dims[x->rnk - 1].is = s;
Chris@42 446 x->dims[x->rnk - 1].os = s;
Chris@42 447 for (i = x->rnk - 1; i > 0; --i) {
Chris@42 448 x->dims[i - 1].is = x->dims[i].is * x->dims[i].n;
Chris@42 449 x->dims[i - 1].os = x->dims[i].os * x->dims[i].n;
Chris@42 450 }
Chris@42 451 }
Chris@42 452 return x;
Chris@42 453 }
Chris@42 454
Chris@42 455 static int all_zero(C *a, int n)
Chris@42 456 {
Chris@42 457 int i;
Chris@42 458 for (i = 0; i < n; ++i)
Chris@42 459 if (c_re(a[i]) != 0.0 || c_im(a[i]) != 0.0)
Chris@42 460 return 0;
Chris@42 461 return 1;
Chris@42 462 }
Chris@42 463
Chris@42 464 static int one_accuracy_test(dofft_closure *k, aconstrain constrain,
Chris@42 465 int sign, int n, C *a, C *b,
Chris@42 466 double t[6])
Chris@42 467 {
Chris@42 468 double err[6];
Chris@42 469
Chris@42 470 if (constrain)
Chris@42 471 constrain(a, n);
Chris@42 472
Chris@42 473 if (all_zero(a, n))
Chris@42 474 return 0;
Chris@42 475
Chris@42 476 k->apply(k, a, b);
Chris@42 477 fftaccuracy(n, a, b, sign, err);
Chris@42 478
Chris@42 479 t[0] += err[0];
Chris@42 480 t[1] += err[1] * err[1];
Chris@42 481 t[2] = dmax(t[2], err[2]);
Chris@42 482 t[3] += err[3];
Chris@42 483 t[4] += err[4] * err[4];
Chris@42 484 t[5] = dmax(t[5], err[5]);
Chris@42 485
Chris@42 486 return 1;
Chris@42 487 }
Chris@42 488
Chris@42 489 void accuracy_test(dofft_closure *k, aconstrain constrain,
Chris@42 490 int sign, int n, C *a, C *b, int rounds, int impulse_rounds,
Chris@42 491 double t[6])
Chris@42 492 {
Chris@42 493 int r, i;
Chris@42 494 int ntests = 0;
Chris@42 495 bench_complex czero = {0, 0};
Chris@42 496
Chris@42 497 for (i = 0; i < 6; ++i) t[i] = 0.0;
Chris@42 498
Chris@42 499 for (r = 0; r < rounds; ++r) {
Chris@42 500 arand(a, n);
Chris@42 501 if (one_accuracy_test(k, constrain, sign, n, a, b, t))
Chris@42 502 ++ntests;
Chris@42 503 }
Chris@42 504
Chris@42 505 /* impulses at beginning of array */
Chris@42 506 for (r = 0; r < impulse_rounds; ++r) {
Chris@42 507 if (r > n - r - 1)
Chris@42 508 continue;
Chris@42 509
Chris@42 510 caset(a, n, czero);
Chris@42 511 c_re(a[r]) = c_im(a[r]) = 1.0;
Chris@42 512
Chris@42 513 if (one_accuracy_test(k, constrain, sign, n, a, b, t))
Chris@42 514 ++ntests;
Chris@42 515 }
Chris@42 516
Chris@42 517 /* impulses at end of array */
Chris@42 518 for (r = 0; r < impulse_rounds; ++r) {
Chris@42 519 if (r <= n - r - 1)
Chris@42 520 continue;
Chris@42 521
Chris@42 522 caset(a, n, czero);
Chris@42 523 c_re(a[n - r - 1]) = c_im(a[n - r - 1]) = 1.0;
Chris@42 524
Chris@42 525 if (one_accuracy_test(k, constrain, sign, n, a, b, t))
Chris@42 526 ++ntests;
Chris@42 527 }
Chris@42 528
Chris@42 529 /* randomly-located impulses */
Chris@42 530 for (r = 0; r < impulse_rounds; ++r) {
Chris@42 531 caset(a, n, czero);
Chris@42 532 i = rand() % n;
Chris@42 533 c_re(a[i]) = c_im(a[i]) = 1.0;
Chris@42 534
Chris@42 535 if (one_accuracy_test(k, constrain, sign, n, a, b, t))
Chris@42 536 ++ntests;
Chris@42 537 }
Chris@42 538
Chris@42 539 t[0] /= ntests;
Chris@42 540 t[1] = sqrt(t[1] / ntests);
Chris@42 541 t[3] /= ntests;
Chris@42 542 t[4] = sqrt(t[4] / ntests);
Chris@42 543
Chris@42 544 fftaccuracy_done();
Chris@42 545 }