annotate src/fftw-3.3.5/genfft/twiddle.ml @ 84:08ae793730bd

Add null config files
author Chris Cannam
date Mon, 02 Mar 2020 14:03:47 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 (*
Chris@42 2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
Chris@42 3 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 4 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 5 *
Chris@42 6 * This program is free software; you can redistribute it and/or modify
Chris@42 7 * it under the terms of the GNU General Public License as published by
Chris@42 8 * the Free Software Foundation; either version 2 of the License, or
Chris@42 9 * (at your option) any later version.
Chris@42 10 *
Chris@42 11 * This program is distributed in the hope that it will be useful,
Chris@42 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 14 * GNU General Public License for more details.
Chris@42 15 *
Chris@42 16 * You should have received a copy of the GNU General Public License
Chris@42 17 * along with this program; if not, write to the Free Software
Chris@42 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 19 *
Chris@42 20 *)
Chris@42 21
Chris@42 22 (* policies for loading/computing twiddle factors *)
Chris@42 23 open Complex
Chris@42 24 open Util
Chris@42 25
Chris@42 26 type twop = TW_FULL | TW_CEXP | TW_NEXT
Chris@42 27
Chris@42 28 let optostring = function
Chris@42 29 | TW_CEXP -> "TW_CEXP"
Chris@42 30 | TW_NEXT -> "TW_NEXT"
Chris@42 31 | TW_FULL -> "TW_FULL"
Chris@42 32
Chris@42 33 type twinstr = (twop * int * int)
Chris@42 34
Chris@42 35 let rec unroll_twfull l = match l with
Chris@42 36 | [] -> []
Chris@42 37 | (TW_FULL, v, n) :: b ->
Chris@42 38 (forall [] cons 1 n (fun i -> (TW_CEXP, v, i)))
Chris@42 39 @ unroll_twfull b
Chris@42 40 | a :: b -> a :: unroll_twfull b
Chris@42 41
Chris@42 42 let twinstr_to_c_string l =
Chris@42 43 let one (op, a, b) = Printf.sprintf "{ %s, %d, %d }" (optostring op) a b
Chris@42 44 in let rec loop first = function
Chris@42 45 | [] -> ""
Chris@42 46 | a :: b -> (if first then "\n" else ",\n") ^ (one a) ^ (loop false b)
Chris@42 47 in "{" ^ (loop true l) ^ "}"
Chris@42 48
Chris@42 49 let twinstr_to_simd_string vl l =
Chris@42 50 let one sep = function
Chris@42 51 | (TW_NEXT, 1, 0) -> sep ^ "{TW_NEXT, " ^ vl ^ ", 0}"
Chris@42 52 | (TW_NEXT, _, _) -> failwith "twinstr_to_simd_string"
Chris@42 53 | (TW_CEXP, v, b) -> sep ^ (Printf.sprintf "VTW(%d,%d)" v b)
Chris@42 54 | _ -> failwith "twinstr_to_simd_string"
Chris@42 55 in let rec loop first = function
Chris@42 56 | [] -> ""
Chris@42 57 | a :: b -> (one (if first then "\n" else ",\n") a) ^ (loop false b)
Chris@42 58 in "{" ^ (loop true (unroll_twfull l)) ^ "}"
Chris@42 59
Chris@42 60 let rec pow m n =
Chris@42 61 if (n = 0) then 1
Chris@42 62 else m * pow m (n - 1)
Chris@42 63
Chris@42 64 let rec is_pow m n =
Chris@42 65 n = 1 || ((n mod m) = 0 && is_pow m (n / m))
Chris@42 66
Chris@42 67 let rec log m n = if n = 1 then 0 else 1 + log m (n / m)
Chris@42 68
Chris@42 69 let rec largest_power_smaller_than m i =
Chris@42 70 if (is_pow m i) then i
Chris@42 71 else largest_power_smaller_than m (i - 1)
Chris@42 72
Chris@42 73 let rec smallest_power_larger_than m i =
Chris@42 74 if (is_pow m i) then i
Chris@42 75 else smallest_power_larger_than m (i + 1)
Chris@42 76
Chris@42 77 let rec_array n f =
Chris@42 78 let g = ref (fun i -> Complex.zero) in
Chris@42 79 let a = Array.init n (fun i -> lazy (!g i)) in
Chris@42 80 let h i = f (fun i -> Lazy.force a.(i)) i in
Chris@42 81 begin
Chris@42 82 g := h;
Chris@42 83 h
Chris@42 84 end
Chris@42 85
Chris@42 86
Chris@42 87 let ctimes use_complex_arith a b =
Chris@42 88 if use_complex_arith then
Chris@42 89 Complex.ctimes a b
Chris@42 90 else
Chris@42 91 Complex.times a b
Chris@42 92
Chris@42 93 let ctimesj use_complex_arith a b =
Chris@42 94 if use_complex_arith then
Chris@42 95 Complex.ctimesj a b
Chris@42 96 else
Chris@42 97 Complex.times (Complex.conj a) b
Chris@42 98
Chris@42 99 let make_bytwiddle sign use_complex_arith g f i =
Chris@42 100 if i = 0 then
Chris@42 101 f i
Chris@42 102 else if sign = 1 then
Chris@42 103 ctimes use_complex_arith (g i) (f i)
Chris@42 104 else
Chris@42 105 ctimesj use_complex_arith (g i) (f i)
Chris@42 106
Chris@42 107 (* various policies for computing/loading twiddle factors *)
Chris@42 108
Chris@42 109 let twiddle_policy_load_all v use_complex_arith =
Chris@42 110 let bytwiddle n sign w f =
Chris@42 111 make_bytwiddle sign use_complex_arith (fun i -> w (i - 1)) f
Chris@42 112 and twidlen n = 2 * (n - 1)
Chris@42 113 and twdesc r = [(TW_FULL, v, r);(TW_NEXT, 1, 0)]
Chris@42 114 in bytwiddle, twidlen, twdesc
Chris@42 115
Chris@42 116 (*
Chris@42 117 * if i is a power of two, then load w (log i)
Chris@42 118 * else let x = largest power of 2 less than i in
Chris@42 119 * let y = i - x in
Chris@42 120 * compute w^{x+y} = w^x * w^y
Chris@42 121 *)
Chris@42 122 let twiddle_policy_log2 v use_complex_arith =
Chris@42 123 let bytwiddle n sign w f =
Chris@42 124 let g = rec_array n (fun self i ->
Chris@42 125 if i = 0 then Complex.one
Chris@42 126 else if is_pow 2 i then w (log 2 i)
Chris@42 127 else let x = largest_power_smaller_than 2 i in
Chris@42 128 let y = i - x in
Chris@42 129 ctimes use_complex_arith (self x) (self y))
Chris@42 130 in make_bytwiddle sign use_complex_arith g f
Chris@42 131 and twidlen n = 2 * (log 2 (largest_power_smaller_than 2 (2 * n - 1)))
Chris@42 132 and twdesc n =
Chris@42 133 (List.flatten
Chris@42 134 (List.map
Chris@42 135 (fun i ->
Chris@42 136 if i > 0 && is_pow 2 i then
Chris@42 137 [TW_CEXP, v, i]
Chris@42 138 else
Chris@42 139 [])
Chris@42 140 (iota n)))
Chris@42 141 @ [(TW_NEXT, 1, 0)]
Chris@42 142 in bytwiddle, twidlen, twdesc
Chris@42 143
Chris@42 144 let twiddle_policy_log3 v use_complex_arith =
Chris@42 145 let rec terms_needed i pi s n =
Chris@42 146 if (s >= n - 1) then i
Chris@42 147 else terms_needed (i + 1) (3 * pi) (s + pi) n
Chris@42 148 in
Chris@42 149 let rec bytwiddle n sign w f =
Chris@42 150 let nterms = terms_needed 0 1 0 n in
Chris@42 151 let maxterm = pow 3 (nterms - 1) in
Chris@42 152 let g = rec_array (3 * n) (fun self i ->
Chris@42 153 if i = 0 then Complex.one
Chris@42 154 else if is_pow 3 i then w (log 3 i)
Chris@42 155 else if i = (n - 1) && maxterm >= n then
Chris@42 156 w (nterms - 1)
Chris@42 157 else let x = smallest_power_larger_than 3 i in
Chris@42 158 if (i + i >= x) then
Chris@42 159 let x = min x (n - 1) in
Chris@42 160 ctimesj use_complex_arith (self (x - i)) (self x)
Chris@42 161 else let x = largest_power_smaller_than 3 i in
Chris@42 162 ctimes use_complex_arith (self (i - x)) (self x))
Chris@42 163 in make_bytwiddle sign use_complex_arith g f
Chris@42 164 and twidlen n = 2 * (terms_needed 0 1 0 n)
Chris@42 165 and twdesc n =
Chris@42 166 (List.map
Chris@42 167 (fun i ->
Chris@42 168 let x = min (pow 3 i) (n - 1) in
Chris@42 169 TW_CEXP, v, x)
Chris@42 170 (iota ((twidlen n) / 2)))
Chris@42 171 @ [(TW_NEXT, 1, 0)]
Chris@42 172 in bytwiddle, twidlen, twdesc
Chris@42 173
Chris@42 174 let current_twiddle_policy = ref twiddle_policy_load_all
Chris@42 175
Chris@42 176 let twiddle_policy use_complex_arith =
Chris@42 177 !current_twiddle_policy use_complex_arith
Chris@42 178
Chris@42 179 let set_policy x = Arg.Unit (fun () -> current_twiddle_policy := x)
Chris@42 180 let set_policy_int x = Arg.Int (fun i -> current_twiddle_policy := x i)
Chris@42 181
Chris@42 182 let undocumented = " Undocumented twiddle policy"
Chris@42 183
Chris@42 184 let speclist = [
Chris@42 185 "-twiddle-load-all", set_policy twiddle_policy_load_all, undocumented;
Chris@42 186 "-twiddle-log2", set_policy twiddle_policy_log2, undocumented;
Chris@42 187 "-twiddle-log3", set_policy twiddle_policy_log3, undocumented;
Chris@42 188 ]