annotate src/fftw-3.3.5/doc/modern-fortran.texi @ 84:08ae793730bd

Add null config files
author Chris Cannam
date Mon, 02 Mar 2020 14:03:47 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 @node Calling FFTW from Modern Fortran, Calling FFTW from Legacy Fortran, Distributed-memory FFTW with MPI, Top
Chris@42 2 @chapter Calling FFTW from Modern Fortran
Chris@42 3 @cindex Fortran interface
Chris@42 4
Chris@42 5 Fortran 2003 standardized ways for Fortran code to call C libraries,
Chris@42 6 and this allows us to support a direct translation of the FFTW C API
Chris@42 7 into Fortran. Compared to the legacy Fortran 77 interface
Chris@42 8 (@pxref{Calling FFTW from Legacy Fortran}), this direct interface
Chris@42 9 offers many advantages, especially compile-time type-checking and
Chris@42 10 aligned memory allocation. As of this writing, support for these C
Chris@42 11 interoperability features seems widespread, having been implemented in
Chris@42 12 nearly all major Fortran compilers (e.g. GNU, Intel, IBM,
Chris@42 13 Oracle/Solaris, Portland Group, NAG).
Chris@42 14 @cindex portability
Chris@42 15
Chris@42 16 This chapter documents that interface. For the most part, since this
Chris@42 17 interface allows Fortran to call the C interface directly, the usage
Chris@42 18 is identical to C translated to Fortran syntax. However, there are a
Chris@42 19 few subtle points such as memory allocation, wisdom, and data types
Chris@42 20 that deserve closer attention.
Chris@42 21
Chris@42 22 @menu
Chris@42 23 * Overview of Fortran interface::
Chris@42 24 * Reversing array dimensions::
Chris@42 25 * FFTW Fortran type reference::
Chris@42 26 * Plan execution in Fortran::
Chris@42 27 * Allocating aligned memory in Fortran::
Chris@42 28 * Accessing the wisdom API from Fortran::
Chris@42 29 * Defining an FFTW module::
Chris@42 30 @end menu
Chris@42 31
Chris@42 32 @c -------------------------------------------------------
Chris@42 33 @node Overview of Fortran interface, Reversing array dimensions, Calling FFTW from Modern Fortran, Calling FFTW from Modern Fortran
Chris@42 34 @section Overview of Fortran interface
Chris@42 35
Chris@42 36 FFTW provides a file @code{fftw3.f03} that defines Fortran 2003
Chris@42 37 interfaces for all of its C routines, except for the MPI routines
Chris@42 38 described elsewhere, which can be found in the same directory as
Chris@42 39 @code{fftw3.h} (the C header file). In any Fortran subroutine where
Chris@42 40 you want to use FFTW functions, you should begin with:
Chris@42 41
Chris@42 42 @cindex iso_c_binding
Chris@42 43 @example
Chris@42 44 use, intrinsic :: iso_c_binding
Chris@42 45 include 'fftw3.f03'
Chris@42 46 @end example
Chris@42 47
Chris@42 48 This includes the interface definitions and the standard
Chris@42 49 @code{iso_c_binding} module (which defines the equivalents of C
Chris@42 50 types). You can also put the FFTW functions into a module if you
Chris@42 51 prefer (@pxref{Defining an FFTW module}).
Chris@42 52
Chris@42 53 At this point, you can now call anything in the FFTW C interface
Chris@42 54 directly, almost exactly as in C other than minor changes in syntax.
Chris@42 55 For example:
Chris@42 56
Chris@42 57 @findex fftw_plan_dft_2d
Chris@42 58 @findex fftw_execute_dft
Chris@42 59 @findex fftw_destroy_plan
Chris@42 60 @example
Chris@42 61 type(C_PTR) :: plan
Chris@42 62 complex(C_DOUBLE_COMPLEX), dimension(1024,1000) :: in, out
Chris@42 63 plan = fftw_plan_dft_2d(1000,1024, in,out, FFTW_FORWARD,FFTW_ESTIMATE)
Chris@42 64 ...
Chris@42 65 call fftw_execute_dft(plan, in, out)
Chris@42 66 ...
Chris@42 67 call fftw_destroy_plan(plan)
Chris@42 68 @end example
Chris@42 69
Chris@42 70 A few important things to keep in mind are:
Chris@42 71
Chris@42 72 @itemize @bullet
Chris@42 73
Chris@42 74 @item
Chris@42 75 @tindex fftw_complex
Chris@42 76 @ctindex C_PTR
Chris@42 77 @ctindex C_INT
Chris@42 78 @ctindex C_DOUBLE
Chris@42 79 @ctindex C_DOUBLE_COMPLEX
Chris@42 80 FFTW plans are @code{type(C_PTR)}. Other C types are mapped in the
Chris@42 81 obvious way via the @code{iso_c_binding} standard: @code{int} turns
Chris@42 82 into @code{integer(C_INT)}, @code{fftw_complex} turns into
Chris@42 83 @code{complex(C_DOUBLE_COMPLEX)}, @code{double} turns into
Chris@42 84 @code{real(C_DOUBLE)}, and so on. @xref{FFTW Fortran type reference}.
Chris@42 85
Chris@42 86 @item
Chris@42 87 Functions in C become functions in Fortran if they have a return value,
Chris@42 88 and subroutines in Fortran otherwise.
Chris@42 89
Chris@42 90 @item
Chris@42 91 The ordering of the Fortran array dimensions must be @emph{reversed}
Chris@42 92 when they are passed to the FFTW plan creation, thanks to differences
Chris@42 93 in array indexing conventions (@pxref{Multi-dimensional Array
Chris@42 94 Format}). This is @emph{unlike} the legacy Fortran interface
Chris@42 95 (@pxref{Fortran-interface routines}), which reversed the dimensions
Chris@42 96 for you. @xref{Reversing array dimensions}.
Chris@42 97
Chris@42 98 @item
Chris@42 99 @cindex alignment
Chris@42 100 @cindex SIMD
Chris@42 101 Using ordinary Fortran array declarations like this works, but may
Chris@42 102 yield suboptimal performance because the data may not be not aligned
Chris@42 103 to exploit SIMD instructions on modern proessors (@pxref{SIMD
Chris@42 104 alignment and fftw_malloc}). Better performance will often be obtained
Chris@42 105 by allocating with @samp{fftw_alloc}. @xref{Allocating aligned memory
Chris@42 106 in Fortran}.
Chris@42 107
Chris@42 108 @item
Chris@42 109 @findex fftw_execute
Chris@42 110 Similar to the legacy Fortran interface (@pxref{FFTW Execution in
Chris@42 111 Fortran}), we currently recommend @emph{not} using @code{fftw_execute}
Chris@42 112 but rather using the more specialized functions like
Chris@42 113 @code{fftw_execute_dft} (@pxref{New-array Execute Functions}).
Chris@42 114 However, you should execute the plan on the @code{same arrays} as the
Chris@42 115 ones for which you created the plan, unless you are especially
Chris@42 116 careful. @xref{Plan execution in Fortran}. To prevent
Chris@42 117 you from using @code{fftw_execute} by mistake, the @code{fftw3.f03}
Chris@42 118 file does not provide an @code{fftw_execute} interface declaration.
Chris@42 119
Chris@42 120 @item
Chris@42 121 @cindex flags
Chris@42 122 Multiple planner flags are combined with @code{ior} (equivalent to @samp{|} in C). e.g. @code{FFTW_MEASURE | FFTW_DESTROY_INPUT} becomes @code{ior(FFTW_MEASURE, FFTW_DESTROY_INPUT)}. (You can also use @samp{+} as long as you don't try to include a given flag more than once.)
Chris@42 123
Chris@42 124 @end itemize
Chris@42 125
Chris@42 126 @menu
Chris@42 127 * Extended and quadruple precision in Fortran::
Chris@42 128 @end menu
Chris@42 129
Chris@42 130 @node Extended and quadruple precision in Fortran, , Overview of Fortran interface, Overview of Fortran interface
Chris@42 131 @subsection Extended and quadruple precision in Fortran
Chris@42 132 @cindex precision
Chris@42 133
Chris@42 134 If FFTW is compiled in @code{long double} (extended) precision
Chris@42 135 (@pxref{Installation and Customization}), you may be able to call the
Chris@42 136 resulting @code{fftwl_} routines (@pxref{Precision}) from Fortran if
Chris@42 137 your compiler supports the @code{C_LONG_DOUBLE_COMPLEX} type code.
Chris@42 138
Chris@42 139 Because some Fortran compilers do not support
Chris@42 140 @code{C_LONG_DOUBLE_COMPLEX}, the @code{fftwl_} declarations are
Chris@42 141 segregated into a separate interface file @code{fftw3l.f03}, which you
Chris@42 142 should include @emph{in addition} to @code{fftw3.f03} (which declares
Chris@42 143 precision-independent @samp{FFTW_} constants):
Chris@42 144
Chris@42 145 @cindex iso_c_binding
Chris@42 146 @example
Chris@42 147 use, intrinsic :: iso_c_binding
Chris@42 148 include 'fftw3.f03'
Chris@42 149 include 'fftw3l.f03'
Chris@42 150 @end example
Chris@42 151
Chris@42 152 We also support using the nonstandard @code{__float128}
Chris@42 153 quadruple-precision type provided by recent versions of @code{gcc} on
Chris@42 154 32- and 64-bit x86 hardware (@pxref{Installation and Customization}),
Chris@42 155 using the corresponding @code{real(16)} and @code{complex(16)} types
Chris@42 156 supported by @code{gfortran}. The quadruple-precision @samp{fftwq_}
Chris@42 157 functions (@pxref{Precision}) are declared in a @code{fftw3q.f03}
Chris@42 158 interface file, which should be included in addition to
Chris@42 159 @code{fftw3l.f03}, as above. You should also link with
Chris@42 160 @code{-lfftw3q -lquadmath -lm} as in C.
Chris@42 161
Chris@42 162 @c -------------------------------------------------------
Chris@42 163 @node Reversing array dimensions, FFTW Fortran type reference, Overview of Fortran interface, Calling FFTW from Modern Fortran
Chris@42 164 @section Reversing array dimensions
Chris@42 165
Chris@42 166 @cindex row-major
Chris@42 167 @cindex column-major
Chris@42 168 A minor annoyance in calling FFTW from Fortran is that FFTW's array
Chris@42 169 dimensions are defined in the C convention (row-major order), while
Chris@42 170 Fortran's array dimensions are the opposite convention (column-major
Chris@42 171 order). @xref{Multi-dimensional Array Format}. This is just a
Chris@42 172 bookkeeping difference, with no effect on performance. The only
Chris@42 173 consequence of this is that, whenever you create an FFTW plan for a
Chris@42 174 multi-dimensional transform, you must always @emph{reverse the
Chris@42 175 ordering of the dimensions}.
Chris@42 176
Chris@42 177 For example, consider the three-dimensional (@threedims{L,M,N}) arrays:
Chris@42 178
Chris@42 179 @example
Chris@42 180 complex(C_DOUBLE_COMPLEX), dimension(L,M,N) :: in, out
Chris@42 181 @end example
Chris@42 182
Chris@42 183 To plan a DFT for these arrays using @code{fftw_plan_dft_3d}, you could do:
Chris@42 184
Chris@42 185 @findex fftw_plan_dft_3d
Chris@42 186 @example
Chris@42 187 plan = fftw_plan_dft_3d(N,M,L, in,out, FFTW_FORWARD,FFTW_ESTIMATE)
Chris@42 188 @end example
Chris@42 189
Chris@42 190 That is, from FFTW's perspective this is a @threedims{N,M,L} array.
Chris@42 191 @emph{No data transposition need occur}, as this is @emph{only
Chris@42 192 notation}. Similarly, to use the more generic routine
Chris@42 193 @code{fftw_plan_dft} with the same arrays, you could do:
Chris@42 194
Chris@42 195 @example
Chris@42 196 integer(C_INT), dimension(3) :: n = [N,M,L]
Chris@42 197 plan = fftw_plan_dft_3d(3, n, in,out, FFTW_FORWARD,FFTW_ESTIMATE)
Chris@42 198 @end example
Chris@42 199
Chris@42 200 Note, by the way, that this is different from the legacy Fortran
Chris@42 201 interface (@pxref{Fortran-interface routines}), which automatically
Chris@42 202 reverses the order of the array dimension for you. Here, you are
Chris@42 203 calling the C interface directly, so there is no ``translation'' layer.
Chris@42 204
Chris@42 205 @cindex r2c/c2r multi-dimensional array format
Chris@42 206 An important thing to keep in mind is the implication of this for
Chris@42 207 multidimensional real-to-complex transforms (@pxref{Multi-Dimensional
Chris@42 208 DFTs of Real Data}). In C, a multidimensional real-to-complex DFT
Chris@42 209 chops the last dimension roughly in half (@threedims{N,M,L} real input
Chris@42 210 goes to @threedims{N,M,L/2+1} complex output). In Fortran, because
Chris@42 211 the array dimension notation is reversed, the @emph{first} dimension of
Chris@42 212 the complex data is chopped roughly in half. For example consider the
Chris@42 213 @samp{r2c} transform of @threedims{L,M,N} real input in Fortran:
Chris@42 214
Chris@42 215 @findex fftw_plan_dft_r2c_3d
Chris@42 216 @findex fftw_execute_dft_r2c
Chris@42 217 @example
Chris@42 218 type(C_PTR) :: plan
Chris@42 219 real(C_DOUBLE), dimension(L,M,N) :: in
Chris@42 220 complex(C_DOUBLE_COMPLEX), dimension(L/2+1,M,N) :: out
Chris@42 221 plan = fftw_plan_dft_r2c_3d(N,M,L, in,out, FFTW_ESTIMATE)
Chris@42 222 ...
Chris@42 223 call fftw_execute_dft_r2c(plan, in, out)
Chris@42 224 @end example
Chris@42 225
Chris@42 226 @cindex in-place
Chris@42 227 @cindex padding
Chris@42 228 Alternatively, for an in-place r2c transform, as described in the C
Chris@42 229 documentation we must @emph{pad} the @emph{first} dimension of the
Chris@42 230 real input with an extra two entries (which are ignored by FFTW) so as
Chris@42 231 to leave enough space for the complex output. The input is
Chris@42 232 @emph{allocated} as a @threedims{2[L/2+1],M,N} array, even though only
Chris@42 233 @threedims{L,M,N} of it is actually used. In this example, we will
Chris@42 234 allocate the array as a pointer type, using @samp{fftw_alloc} to
Chris@42 235 ensure aligned memory for maximum performance (@pxref{Allocating
Chris@42 236 aligned memory in Fortran}); this also makes it easy to reference the
Chris@42 237 same memory as both a real array and a complex array.
Chris@42 238
Chris@42 239 @findex fftw_alloc_complex
Chris@42 240 @findex c_f_pointer
Chris@42 241 @example
Chris@42 242 real(C_DOUBLE), pointer :: in(:,:,:)
Chris@42 243 complex(C_DOUBLE_COMPLEX), pointer :: out(:,:,:)
Chris@42 244 type(C_PTR) :: plan, data
Chris@42 245 data = fftw_alloc_complex(int((L/2+1) * M * N, C_SIZE_T))
Chris@42 246 call c_f_pointer(data, in, [2*(L/2+1),M,N])
Chris@42 247 call c_f_pointer(data, out, [L/2+1,M,N])
Chris@42 248 plan = fftw_plan_dft_r2c_3d(N,M,L, in,out, FFTW_ESTIMATE)
Chris@42 249 ...
Chris@42 250 call fftw_execute_dft_r2c(plan, in, out)
Chris@42 251 ...
Chris@42 252 call fftw_destroy_plan(plan)
Chris@42 253 call fftw_free(data)
Chris@42 254 @end example
Chris@42 255
Chris@42 256 @c -------------------------------------------------------
Chris@42 257 @node FFTW Fortran type reference, Plan execution in Fortran, Reversing array dimensions, Calling FFTW from Modern Fortran
Chris@42 258 @section FFTW Fortran type reference
Chris@42 259
Chris@42 260 The following are the most important type correspondences between the
Chris@42 261 C interface and Fortran:
Chris@42 262
Chris@42 263 @itemize @bullet
Chris@42 264
Chris@42 265 @item
Chris@42 266 @tindex fftw_plan
Chris@42 267 Plans (@code{fftw_plan} and variants) are @code{type(C_PTR)} (i.e. an
Chris@42 268 opaque pointer).
Chris@42 269
Chris@42 270 @item
Chris@42 271 @tindex fftw_complex
Chris@42 272 @cindex precision
Chris@42 273 @ctindex C_DOUBLE
Chris@42 274 @ctindex C_FLOAT
Chris@42 275 @ctindex C_LONG_DOUBLE
Chris@42 276 @ctindex C_DOUBLE_COMPLEX
Chris@42 277 @ctindex C_FLOAT_COMPLEX
Chris@42 278 @ctindex C_LONG_DOUBLE_COMPLEX
Chris@42 279 The C floating-point types @code{double}, @code{float}, and @code{long
Chris@42 280 double} correspond to @code{real(C_DOUBLE)}, @code{real(C_FLOAT)}, and
Chris@42 281 @code{real(C_LONG_DOUBLE)}, respectively. The C complex types
Chris@42 282 @code{fftw_complex}, @code{fftwf_complex}, and @code{fftwl_complex}
Chris@42 283 correspond in Fortran to @code{complex(C_DOUBLE_COMPLEX)},
Chris@42 284 @code{complex(C_FLOAT_COMPLEX)}, and
Chris@42 285 @code{complex(C_LONG_DOUBLE_COMPLEX)}, respectively.
Chris@42 286 Just as in C
Chris@42 287 (@pxref{Precision}), the FFTW subroutines and types are prefixed with
Chris@42 288 @samp{fftw_}, @code{fftwf_}, and @code{fftwl_} for the different precisions, and link to different libraries (@code{-lfftw3}, @code{-lfftw3f}, and @code{-lfftw3l} on Unix), but use the @emph{same} include file @code{fftw3.f03} and the @emph{same} constants (all of which begin with @samp{FFTW_}). The exception is @code{long double} precision, for which you should @emph{also} include @code{fftw3l.f03} (@pxref{Extended and quadruple precision in Fortran}).
Chris@42 289
Chris@42 290 @item
Chris@42 291 @tindex ptrdiff_t
Chris@42 292 @ctindex C_INT
Chris@42 293 @ctindex C_INTPTR_T
Chris@42 294 @ctindex C_SIZE_T
Chris@42 295 @findex fftw_malloc
Chris@42 296 The C integer types @code{int} and @code{unsigned} (used for planner
Chris@42 297 flags) become @code{integer(C_INT)}. The C integer type @code{ptrdiff_t} (e.g. in the @ref{64-bit Guru Interface}) becomes @code{integer(C_INTPTR_T)}, and @code{size_t} (in @code{fftw_malloc} etc.) becomes @code{integer(C_SIZE_T)}.
Chris@42 298
Chris@42 299 @item
Chris@42 300 @tindex fftw_r2r_kind
Chris@42 301 @ctindex C_FFTW_R2R_KIND
Chris@42 302 The @code{fftw_r2r_kind} type (@pxref{Real-to-Real Transform Kinds})
Chris@42 303 becomes @code{integer(C_FFTW_R2R_KIND)}. The various constant values
Chris@42 304 of the C enumerated type (@code{FFTW_R2HC} etc.) become simply integer
Chris@42 305 constants of the same names in Fortran.
Chris@42 306
Chris@42 307 @item
Chris@42 308 @ctindex FFTW_DESTROY_INPUT
Chris@42 309 @cindex in-place
Chris@42 310 @findex fftw_flops
Chris@42 311 Numeric array pointer arguments (e.g. @code{double *})
Chris@42 312 become @code{dimension(*), intent(out)} arrays of the same type, or
Chris@42 313 @code{dimension(*), intent(in)} if they are pointers to constant data
Chris@42 314 (e.g. @code{const int *}). There are a few exceptions where numeric
Chris@42 315 pointers refer to scalar outputs (e.g. for @code{fftw_flops}), in which
Chris@42 316 case they are @code{intent(out)} scalar arguments in Fortran too.
Chris@42 317 For the new-array execute functions (@pxref{New-array Execute Functions}),
Chris@42 318 the input arrays are declared @code{dimension(*), intent(inout)}, since
Chris@42 319 they can be modified in the case of in-place or @code{FFTW_DESTROY_INPUT}
Chris@42 320 transforms.
Chris@42 321
Chris@42 322 @item
Chris@42 323 @findex fftw_alloc_real
Chris@42 324 @findex c_f_pointer
Chris@42 325 Pointer @emph{return} values (e.g @code{double *}) become
Chris@42 326 @code{type(C_PTR)}. (If they are pointers to arrays, as for
Chris@42 327 @code{fftw_alloc_real}, you can convert them back to Fortran array
Chris@42 328 pointers with the standard intrinsic function @code{c_f_pointer}.)
Chris@42 329
Chris@42 330 @item
Chris@42 331 @cindex guru interface
Chris@42 332 @tindex fftw_iodim
Chris@42 333 @tindex fftw_iodim64
Chris@42 334 @cindex 64-bit architecture
Chris@42 335 The @code{fftw_iodim} type in the guru interface (@pxref{Guru vector
Chris@42 336 and transform sizes}) becomes @code{type(fftw_iodim)} in Fortran, a
Chris@42 337 derived data type (the Fortran analogue of C's @code{struct}) with
Chris@42 338 three @code{integer(C_INT)} components: @code{n}, @code{is}, and
Chris@42 339 @code{os}, with the same meanings as in C. The @code{fftw_iodim64} type in the 64-bit guru interface (@pxref{64-bit Guru Interface}) is the same, except that its components are of type @code{integer(C_INTPTR_T)}.
Chris@42 340
Chris@42 341 @item
Chris@42 342 @ctindex C_FUNPTR
Chris@42 343 Using the wisdom import/export functions from Fortran is a bit tricky,
Chris@42 344 and is discussed in @ref{Accessing the wisdom API from Fortran}. In
Chris@42 345 brief, the @code{FILE *} arguments map to @code{type(C_PTR)}, @code{const char *} to @code{character(C_CHAR), dimension(*), intent(in)} (null-terminated!), and the generic read-char/write-char functions map to @code{type(C_FUNPTR)}.
Chris@42 346
Chris@42 347 @end itemize
Chris@42 348
Chris@42 349 @cindex portability
Chris@42 350 You may be wondering if you need to search-and-replace
Chris@42 351 @code{real(kind(0.0d0))} (or whatever your favorite Fortran spelling
Chris@42 352 of ``double precision'' is) with @code{real(C_DOUBLE)} everywhere in
Chris@42 353 your program, and similarly for @code{complex} and @code{integer}
Chris@42 354 types. The answer is no; you can still use your existing types. As
Chris@42 355 long as these types match their C counterparts, things should work
Chris@42 356 without a hitch. The worst that can happen, e.g. in the (unlikely)
Chris@42 357 event of a system where @code{real(kind(0.0d0))} is different from
Chris@42 358 @code{real(C_DOUBLE)}, is that the compiler will give you a
Chris@42 359 type-mismatch error. That is, if you don't use the
Chris@42 360 @code{iso_c_binding} kinds you need to accept at least the theoretical
Chris@42 361 possibility of having to change your code in response to compiler
Chris@42 362 errors on some future machine, but you don't need to worry about
Chris@42 363 silently compiling incorrect code that yields runtime errors.
Chris@42 364
Chris@42 365 @c -------------------------------------------------------
Chris@42 366 @node Plan execution in Fortran, Allocating aligned memory in Fortran, FFTW Fortran type reference, Calling FFTW from Modern Fortran
Chris@42 367 @section Plan execution in Fortran
Chris@42 368
Chris@42 369 In C, in order to use a plan, one normally calls @code{fftw_execute},
Chris@42 370 which executes the plan to perform the transform on the input/output
Chris@42 371 arrays passed when the plan was created (@pxref{Using Plans}). The
Chris@42 372 corresponding subroutine call in modern Fortran is:
Chris@42 373 @example
Chris@42 374 call fftw_execute(plan)
Chris@42 375 @end example
Chris@42 376 @findex fftw_execute
Chris@42 377
Chris@42 378 However, we have had reports that this causes problems with some
Chris@42 379 recent optimizing Fortran compilers. The problem is, because the
Chris@42 380 input/output arrays are not passed as explicit arguments to
Chris@42 381 @code{fftw_execute}, the semantics of Fortran (unlike C) allow the
Chris@42 382 compiler to assume that the input/output arrays are not changed by
Chris@42 383 @code{fftw_execute}. As a consequence, certain compilers end up
Chris@42 384 repositioning the call to @code{fftw_execute}, assuming incorrectly
Chris@42 385 that it does nothing to the arrays.
Chris@42 386
Chris@42 387 There are various workarounds to this, but the safest and simplest
Chris@42 388 thing is to not use @code{fftw_execute} in Fortran. Instead, use the
Chris@42 389 functions described in @ref{New-array Execute Functions}, which take
Chris@42 390 the input/output arrays as explicit arguments. For example, if the
Chris@42 391 plan is for a complex-data DFT and was created for the arrays
Chris@42 392 @code{in} and @code{out}, you would do:
Chris@42 393 @example
Chris@42 394 call fftw_execute_dft(plan, in, out)
Chris@42 395 @end example
Chris@42 396 @findex fftw_execute_dft
Chris@42 397
Chris@42 398 There are a few things to be careful of, however:
Chris@42 399
Chris@42 400 @itemize @bullet
Chris@42 401
Chris@42 402 @item
Chris@42 403 @findex fftw_execute_dft_r2c
Chris@42 404 @findex fftw_execute_dft_c2r
Chris@42 405 @findex fftw_execute_r2r
Chris@42 406 You must use the correct type of execute function, matching the way
Chris@42 407 the plan was created. Complex DFT plans should use
Chris@42 408 @code{fftw_execute_dft}, Real-input (r2c) DFT plans should use use
Chris@42 409 @code{fftw_execute_dft_r2c}, and real-output (c2r) DFT plans should
Chris@42 410 use @code{fftw_execute_dft_c2r}. The various r2r plans should use
Chris@42 411 @code{fftw_execute_r2r}. Fortunately, if you use the wrong one you
Chris@42 412 will get a compile-time type-mismatch error (unlike legacy Fortran).
Chris@42 413
Chris@42 414 @item
Chris@42 415 You should normally pass the same input/output arrays that were used when
Chris@42 416 creating the plan. This is always safe.
Chris@42 417
Chris@42 418 @item
Chris@42 419 @emph{If} you pass @emph{different} input/output arrays compared to
Chris@42 420 those used when creating the plan, you must abide by all the
Chris@42 421 restrictions of the new-array execute functions (@pxref{New-array
Chris@42 422 Execute Functions}). The most tricky of these is the
Chris@42 423 requirement that the new arrays have the same alignment as the
Chris@42 424 original arrays; the best (and possibly only) way to guarantee this
Chris@42 425 is to use the @samp{fftw_alloc} functions to allocate your arrays (@pxref{Allocating aligned memory in Fortran}). Alternatively, you can
Chris@42 426 use the @code{FFTW_UNALIGNED} flag when creating the
Chris@42 427 plan, in which case the plan does not depend on the alignment, but
Chris@42 428 this may sacrifice substantial performance on architectures (like x86)
Chris@42 429 with SIMD instructions (@pxref{SIMD alignment and fftw_malloc}).
Chris@42 430 @ctindex FFTW_UNALIGNED
Chris@42 431
Chris@42 432 @end itemize
Chris@42 433
Chris@42 434 @c -------------------------------------------------------
Chris@42 435 @node Allocating aligned memory in Fortran, Accessing the wisdom API from Fortran, Plan execution in Fortran, Calling FFTW from Modern Fortran
Chris@42 436 @section Allocating aligned memory in Fortran
Chris@42 437
Chris@42 438 @cindex alignment
Chris@42 439 @findex fftw_alloc_real
Chris@42 440 @findex fftw_alloc_complex
Chris@42 441 In order to obtain maximum performance in FFTW, you should store your
Chris@42 442 data in arrays that have been specially aligned in memory (@pxref{SIMD
Chris@42 443 alignment and fftw_malloc}). Enforcing alignment also permits you to
Chris@42 444 safely use the new-array execute functions (@pxref{New-array Execute
Chris@42 445 Functions}) to apply a given plan to more than one pair of in/out
Chris@42 446 arrays. Unfortunately, standard Fortran arrays do @emph{not} provide
Chris@42 447 any alignment guarantees. The @emph{only} way to allocate aligned
Chris@42 448 memory in standard Fortran is to allocate it with an external C
Chris@42 449 function, like the @code{fftw_alloc_real} and
Chris@42 450 @code{fftw_alloc_complex} functions. Fortunately, Fortran 2003 provides
Chris@42 451 a simple way to associate such allocated memory with a standard Fortran
Chris@42 452 array pointer that you can then use normally.
Chris@42 453
Chris@42 454 We therefore recommend allocating all your input/output arrays using
Chris@42 455 the following technique:
Chris@42 456
Chris@42 457 @enumerate
Chris@42 458
Chris@42 459 @item
Chris@42 460 Declare a @code{pointer}, @code{arr}, to your array of the desired type
Chris@42 461 and dimensions. For example, @code{real(C_DOUBLE), pointer :: a(:,:)}
Chris@42 462 for a 2d real array, or @code{complex(C_DOUBLE_COMPLEX), pointer ::
Chris@42 463 a(:,:,:)} for a 3d complex array.
Chris@42 464
Chris@42 465 @item
Chris@42 466 The number of elements to allocate must be an
Chris@42 467 @code{integer(C_SIZE_T)}. You can either declare a variable of this
Chris@42 468 type, e.g. @code{integer(C_SIZE_T) :: sz}, to store the number of
Chris@42 469 elements to allocate, or you can use the @code{int(..., C_SIZE_T)}
Chris@42 470 intrinsic function. e.g. set @code{sz = L * M * N} or use
Chris@42 471 @code{int(L * M * N, C_SIZE_T)} for an @threedims{L,M,N} array.
Chris@42 472
Chris@42 473 @item
Chris@42 474 Declare a @code{type(C_PTR) :: p} to hold the return value from
Chris@42 475 FFTW's allocation routine. Set @code{p = fftw_alloc_real(sz)} for a real array, or @code{p = fftw_alloc_complex(sz)} for a complex array.
Chris@42 476
Chris@42 477 @item
Chris@42 478 @findex c_f_pointer
Chris@42 479 Associate your pointer @code{arr} with the allocated memory @code{p}
Chris@42 480 using the standard @code{c_f_pointer} subroutine: @code{call
Chris@42 481 c_f_pointer(p, arr, [...dimensions...])}, where
Chris@42 482 @code{[...dimensions...])} are an array of the dimensions of the array
Chris@42 483 (in the usual Fortran order). e.g. @code{call c_f_pointer(p, arr,
Chris@42 484 [L,M,N])} for an @threedims{L,M,N} array. (Alternatively, you can
Chris@42 485 omit the dimensions argument if you specified the shape explicitly
Chris@42 486 when declaring @code{arr}.) You can now use @code{arr} as a usual
Chris@42 487 multidimensional array.
Chris@42 488
Chris@42 489 @item
Chris@42 490 When you are done using the array, deallocate the memory by @code{call
Chris@42 491 fftw_free(p)} on @code{p}.
Chris@42 492
Chris@42 493 @end enumerate
Chris@42 494
Chris@42 495 For example, here is how we would allocate an @twodims{L,M} 2d real array:
Chris@42 496
Chris@42 497 @example
Chris@42 498 real(C_DOUBLE), pointer :: arr(:,:)
Chris@42 499 type(C_PTR) :: p
Chris@42 500 p = fftw_alloc_real(int(L * M, C_SIZE_T))
Chris@42 501 call c_f_pointer(p, arr, [L,M])
Chris@42 502 @emph{...use arr and arr(i,j) as usual...}
Chris@42 503 call fftw_free(p)
Chris@42 504 @end example
Chris@42 505
Chris@42 506 and here is an @threedims{L,M,N} 3d complex array:
Chris@42 507
Chris@42 508 @example
Chris@42 509 complex(C_DOUBLE_COMPLEX), pointer :: arr(:,:,:)
Chris@42 510 type(C_PTR) :: p
Chris@42 511 p = fftw_alloc_complex(int(L * M * N, C_SIZE_T))
Chris@42 512 call c_f_pointer(p, arr, [L,M,N])
Chris@42 513 @emph{...use arr and arr(i,j,k) as usual...}
Chris@42 514 call fftw_free(p)
Chris@42 515 @end example
Chris@42 516
Chris@42 517 See @ref{Reversing array dimensions} for an example allocating a
Chris@42 518 single array and associating both real and complex array pointers with
Chris@42 519 it, for in-place real-to-complex transforms.
Chris@42 520
Chris@42 521 @c -------------------------------------------------------
Chris@42 522 @node Accessing the wisdom API from Fortran, Defining an FFTW module, Allocating aligned memory in Fortran, Calling FFTW from Modern Fortran
Chris@42 523 @section Accessing the wisdom API from Fortran
Chris@42 524 @cindex wisdom
Chris@42 525 @cindex saving plans to disk
Chris@42 526
Chris@42 527 As explained in @ref{Words of Wisdom-Saving Plans}, FFTW provides a
Chris@42 528 ``wisdom'' API for saving plans to disk so that they can be recreated
Chris@42 529 quickly. The C API for exporting (@pxref{Wisdom Export}) and
Chris@42 530 importing (@pxref{Wisdom Import}) wisdom is somewhat tricky to use
Chris@42 531 from Fortran, however, because of differences in file I/O and string
Chris@42 532 types between C and Fortran.
Chris@42 533
Chris@42 534 @menu
Chris@42 535 * Wisdom File Export/Import from Fortran::
Chris@42 536 * Wisdom String Export/Import from Fortran::
Chris@42 537 * Wisdom Generic Export/Import from Fortran::
Chris@42 538 @end menu
Chris@42 539
Chris@42 540 @c =========>
Chris@42 541 @node Wisdom File Export/Import from Fortran, Wisdom String Export/Import from Fortran, Accessing the wisdom API from Fortran, Accessing the wisdom API from Fortran
Chris@42 542 @subsection Wisdom File Export/Import from Fortran
Chris@42 543
Chris@42 544 @findex fftw_import wisdom_from_filename
Chris@42 545 @findex fftw_export_wisdom_to_filename
Chris@42 546 The easiest way to export and import wisdom is to do so using
Chris@42 547 @code{fftw_export_wisdom_to_filename} and
Chris@42 548 @code{fftw_wisdom_from_filename}. The only trick is that these
Chris@42 549 require you to pass a C string, which is an array of type
Chris@42 550 @code{CHARACTER(C_CHAR)} that is terminated by @code{C_NULL_CHAR}.
Chris@42 551 You can call them like this:
Chris@42 552
Chris@42 553 @example
Chris@42 554 integer(C_INT) :: ret
Chris@42 555 ret = fftw_export_wisdom_to_filename(C_CHAR_'my_wisdom.dat' // C_NULL_CHAR)
Chris@42 556 if (ret .eq. 0) stop 'error exporting wisdom to file'
Chris@42 557 ret = fftw_import_wisdom_from_filename(C_CHAR_'my_wisdom.dat' // C_NULL_CHAR)
Chris@42 558 if (ret .eq. 0) stop 'error importing wisdom from file'
Chris@42 559 @end example
Chris@42 560
Chris@42 561 Note that prepending @samp{C_CHAR_} is needed to specify that the
Chris@42 562 literal string is of kind @code{C_CHAR}, and we null-terminate the
Chris@42 563 string by appending @samp{// C_NULL_CHAR}. These functions return an
Chris@42 564 @code{integer(C_INT)} (@code{ret}) which is @code{0} if an error
Chris@42 565 occurred during export/import and nonzero otherwise.
Chris@42 566
Chris@42 567 It is also possible to use the lower-level routines
Chris@42 568 @code{fftw_export_wisdom_to_file} and
Chris@42 569 @code{fftw_import_wisdom_from_file}, which accept parameters of the C
Chris@42 570 type @code{FILE*}, expressed in Fortran as @code{type(C_PTR)}.
Chris@42 571 However, you are then responsible for creating the @code{FILE*}
Chris@42 572 yourself. You can do this by using @code{iso_c_binding} to define
Chris@42 573 Fortran intefaces for the C library functions @code{fopen} and
Chris@42 574 @code{fclose}, which is a bit strange in Fortran but workable.
Chris@42 575
Chris@42 576 @c =========>
Chris@42 577 @node Wisdom String Export/Import from Fortran, Wisdom Generic Export/Import from Fortran, Wisdom File Export/Import from Fortran, Accessing the wisdom API from Fortran
Chris@42 578 @subsection Wisdom String Export/Import from Fortran
Chris@42 579
Chris@42 580 @findex fftw_export_wisdom_to_string
Chris@42 581 Dealing with FFTW's C string export/import is a bit more painful. In
Chris@42 582 particular, the @code{fftw_export_wisdom_to_string} function requires
Chris@42 583 you to deal with a dynamically allocated C string. To get its length,
Chris@42 584 you must define an interface to the C @code{strlen} function, and to
Chris@42 585 deallocate it you must define an interface to C @code{free}:
Chris@42 586
Chris@42 587 @example
Chris@42 588 use, intrinsic :: iso_c_binding
Chris@42 589 interface
Chris@42 590 integer(C_INT) function strlen(s) bind(C, name='strlen')
Chris@42 591 import
Chris@42 592 type(C_PTR), value :: s
Chris@42 593 end function strlen
Chris@42 594 subroutine free(p) bind(C, name='free')
Chris@42 595 import
Chris@42 596 type(C_PTR), value :: p
Chris@42 597 end subroutine free
Chris@42 598 end interface
Chris@42 599 @end example
Chris@42 600
Chris@42 601 Given these definitions, you can then export wisdom to a Fortran
Chris@42 602 character array:
Chris@42 603
Chris@42 604 @example
Chris@42 605 character(C_CHAR), pointer :: s(:)
Chris@42 606 integer(C_SIZE_T) :: slen
Chris@42 607 type(C_PTR) :: p
Chris@42 608 p = fftw_export_wisdom_to_string()
Chris@42 609 if (.not. c_associated(p)) stop 'error exporting wisdom'
Chris@42 610 slen = strlen(p)
Chris@42 611 call c_f_pointer(p, s, [slen+1])
Chris@42 612 ...
Chris@42 613 call free(p)
Chris@42 614 @end example
Chris@42 615 @findex c_associated
Chris@42 616 @findex c_f_pointer
Chris@42 617
Chris@42 618 Note that @code{slen} is the length of the C string, but the length of
Chris@42 619 the array is @code{slen+1} because it includes the terminating null
Chris@42 620 character. (You can omit the @samp{+1} if you don't want Fortran to
Chris@42 621 know about the null character.) The standard @code{c_associated} function
Chris@42 622 checks whether @code{p} is a null pointer, which is returned by
Chris@42 623 @code{fftw_export_wisdom_to_string} if there was an error.
Chris@42 624
Chris@42 625 @findex fftw_import_wisdom_from_string
Chris@42 626 To import wisdom from a string, use
Chris@42 627 @code{fftw_import_wisdom_from_string} as usual; note that the argument
Chris@42 628 of this function must be a @code{character(C_CHAR)} that is terminated
Chris@42 629 by the @code{C_NULL_CHAR} character, like the @code{s} array above.
Chris@42 630
Chris@42 631 @c =========>
Chris@42 632 @node Wisdom Generic Export/Import from Fortran, , Wisdom String Export/Import from Fortran, Accessing the wisdom API from Fortran
Chris@42 633 @subsection Wisdom Generic Export/Import from Fortran
Chris@42 634
Chris@42 635 The most generic wisdom export/import functions allow you to provide
Chris@42 636 an arbitrary callback function to read/write one character at a time
Chris@42 637 in any way you want. However, your callback function must be written
Chris@42 638 in a special way, using the @code{bind(C)} attribute to be passed to a
Chris@42 639 C interface.
Chris@42 640
Chris@42 641 @findex fftw_export_wisdom
Chris@42 642 In particular, to call the generic wisdom export function
Chris@42 643 @code{fftw_export_wisdom}, you would write a callback subroutine of the form:
Chris@42 644
Chris@42 645 @example
Chris@42 646 subroutine my_write_char(c, p) bind(C)
Chris@42 647 use, intrinsic :: iso_c_binding
Chris@42 648 character(C_CHAR), value :: c
Chris@42 649 type(C_PTR), value :: p
Chris@42 650 @emph{...write c...}
Chris@42 651 end subroutine my_write_char
Chris@42 652 @end example
Chris@42 653
Chris@42 654 Given such a subroutine (along with the corresponding interface definition), you could then export wisdom using:
Chris@42 655
Chris@42 656 @findex c_funloc
Chris@42 657 @example
Chris@42 658 call fftw_export_wisdom(c_funloc(my_write_char), p)
Chris@42 659 @end example
Chris@42 660
Chris@42 661 @findex c_loc
Chris@42 662 @findex c_f_pointer
Chris@42 663 The standard @code{c_funloc} intrinsic converts a Fortran
Chris@42 664 @code{bind(C)} subroutine into a C function pointer. The parameter
Chris@42 665 @code{p} is a @code{type(C_PTR)} to any arbitrary data that you want
Chris@42 666 to pass to @code{my_write_char} (or @code{C_NULL_PTR} if none). (Note
Chris@42 667 that you can get a C pointer to Fortran data using the intrinsic
Chris@42 668 @code{c_loc}, and convert it back to a Fortran pointer in
Chris@42 669 @code{my_write_char} using @code{c_f_pointer}.)
Chris@42 670
Chris@42 671 Similarly, to use the generic @code{fftw_import_wisdom}, you would
Chris@42 672 define a callback function of the form:
Chris@42 673
Chris@42 674 @findex fftw_import_wisdom
Chris@42 675 @example
Chris@42 676 integer(C_INT) function my_read_char(p) bind(C)
Chris@42 677 use, intrinsic :: iso_c_binding
Chris@42 678 type(C_PTR), value :: p
Chris@42 679 character :: c
Chris@42 680 @emph{...read a character c...}
Chris@42 681 my_read_char = ichar(c, C_INT)
Chris@42 682 end function my_read_char
Chris@42 683
Chris@42 684 ....
Chris@42 685
Chris@42 686 integer(C_INT) :: ret
Chris@42 687 ret = fftw_import_wisdom(c_funloc(my_read_char), p)
Chris@42 688 if (ret .eq. 0) stop 'error importing wisdom'
Chris@42 689 @end example
Chris@42 690
Chris@42 691 Your function can return @code{-1} if the end of the input is reached.
Chris@42 692 Again, @code{p} is an arbitrary @code{type(C_PTR} that is passed
Chris@42 693 through to your function. @code{fftw_import_wisdom} returns @code{0}
Chris@42 694 if an error occurred and nonzero otherwise.
Chris@42 695
Chris@42 696 @c -------------------------------------------------------
Chris@42 697 @node Defining an FFTW module, , Accessing the wisdom API from Fortran, Calling FFTW from Modern Fortran
Chris@42 698 @section Defining an FFTW module
Chris@42 699
Chris@42 700 Rather than using the @code{include} statement to include the
Chris@42 701 @code{fftw3.f03} interface file in any subroutine where you want to
Chris@42 702 use FFTW, you might prefer to define an FFTW Fortran module. FFTW
Chris@42 703 does not install itself as a module, primarily because
Chris@42 704 @code{fftw3.f03} can be shared between different Fortran compilers while
Chris@42 705 modules (in general) cannot. However, it is trivial to define your
Chris@42 706 own FFTW module if you want. Just create a file containing:
Chris@42 707
Chris@42 708 @example
Chris@42 709 module FFTW3
Chris@42 710 use, intrinsic :: iso_c_binding
Chris@42 711 include 'fftw3.f03'
Chris@42 712 end module
Chris@42 713 @end example
Chris@42 714
Chris@42 715 Compile this file into a module as usual for your compiler (e.g. with
Chris@42 716 @code{gfortran -c} you will get a file @code{fftw3.mod}). Now,
Chris@42 717 instead of @code{include 'fftw3.f03'}, whenever you want to use FFTW
Chris@42 718 routines you can just do:
Chris@42 719
Chris@42 720 @example
Chris@42 721 use FFTW3
Chris@42 722 @end example
Chris@42 723
Chris@42 724 as usual for Fortran modules. (You still need to link to the FFTW
Chris@42 725 library, of course.)