annotate src/fftw-3.3.5/dft/simd/common/t3fv_10.c @ 84:08ae793730bd

Add null config files
author Chris Cannam
date Mon, 02 Mar 2020 14:03:47 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@42 22 /* Generated on Sat Jul 30 16:44:01 EDT 2016 */
Chris@42 23
Chris@42 24 #include "codelet-dft.h"
Chris@42 25
Chris@42 26 #ifdef HAVE_FMA
Chris@42 27
Chris@42 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3fv_10 -include t3f.h */
Chris@42 29
Chris@42 30 /*
Chris@42 31 * This function contains 57 FP additions, 52 FP multiplications,
Chris@42 32 * (or, 39 additions, 34 multiplications, 18 fused multiply/add),
Chris@42 33 * 57 stack variables, 4 constants, and 20 memory accesses
Chris@42 34 */
Chris@42 35 #include "t3f.h"
Chris@42 36
Chris@42 37 static void t3fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 38 {
Chris@42 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@42 40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@42 41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@42 42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@42 43 {
Chris@42 44 INT m;
Chris@42 45 R *x;
Chris@42 46 x = ri;
Chris@42 47 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) {
Chris@42 48 V T1, T7, Th, Tx, Tr, Td, Tp, T6, Tv, Tc, Te, Ti, Tl, T2, T3;
Chris@42 49 V T5;
Chris@42 50 T2 = LDW(&(W[0]));
Chris@42 51 T3 = LDW(&(W[TWVL * 2]));
Chris@42 52 T5 = LDW(&(W[TWVL * 4]));
Chris@42 53 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@42 54 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@42 55 {
Chris@42 56 V To, Tw, Tq, Tu, Ta, T4, Tt, Tk, Tb;
Chris@42 57 To = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@42 58 Tw = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@42 59 Tq = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
Chris@42 60 Tu = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@42 61 Ta = VZMULJ(T2, T3);
Chris@42 62 T4 = VZMUL(T2, T3);
Chris@42 63 Th = VZMULJ(T2, T5);
Chris@42 64 Tt = VZMULJ(T3, T5);
Chris@42 65 Tb = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@42 66 Tx = VZMULJ(T2, Tw);
Chris@42 67 Tr = VZMULJ(T5, Tq);
Chris@42 68 Tk = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@42 69 Td = VZMULJ(Ta, T5);
Chris@42 70 Tp = VZMULJ(T4, To);
Chris@42 71 T6 = VZMULJ(T4, T5);
Chris@42 72 Tv = VZMULJ(Tt, Tu);
Chris@42 73 Tc = VZMULJ(Ta, Tb);
Chris@42 74 Te = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@42 75 Ti = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
Chris@42 76 Tl = VZMULJ(T3, Tk);
Chris@42 77 }
Chris@42 78 {
Chris@42 79 V TN, Ts, T8, Ty, TO, Tf, Tj;
Chris@42 80 TN = VADD(Tp, Tr);
Chris@42 81 Ts = VSUB(Tp, Tr);
Chris@42 82 T8 = VZMULJ(T6, T7);
Chris@42 83 Ty = VSUB(Tv, Tx);
Chris@42 84 TO = VADD(Tv, Tx);
Chris@42 85 Tf = VZMULJ(Td, Te);
Chris@42 86 Tj = VZMULJ(Th, Ti);
Chris@42 87 {
Chris@42 88 V T9, TJ, TP, TU, Tz, TF, Tg, TK, Tm, TL;
Chris@42 89 T9 = VSUB(T1, T8);
Chris@42 90 TJ = VADD(T1, T8);
Chris@42 91 TP = VADD(TN, TO);
Chris@42 92 TU = VSUB(TN, TO);
Chris@42 93 Tz = VADD(Ts, Ty);
Chris@42 94 TF = VSUB(Ts, Ty);
Chris@42 95 Tg = VSUB(Tc, Tf);
Chris@42 96 TK = VADD(Tc, Tf);
Chris@42 97 Tm = VSUB(Tj, Tl);
Chris@42 98 TL = VADD(Tj, Tl);
Chris@42 99 {
Chris@42 100 V TM, TV, Tn, TE;
Chris@42 101 TM = VADD(TK, TL);
Chris@42 102 TV = VSUB(TK, TL);
Chris@42 103 Tn = VADD(Tg, Tm);
Chris@42 104 TE = VSUB(Tg, Tm);
Chris@42 105 {
Chris@42 106 V TW, TY, TS, TQ, TG, TI, TC, TA, TR, TB;
Chris@42 107 TW = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TV, TU));
Chris@42 108 TY = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TU, TV));
Chris@42 109 TS = VSUB(TM, TP);
Chris@42 110 TQ = VADD(TM, TP);
Chris@42 111 TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TF, TE));
Chris@42 112 TI = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TE, TF));
Chris@42 113 TC = VSUB(Tn, Tz);
Chris@42 114 TA = VADD(Tn, Tz);
Chris@42 115 ST(&(x[0]), VADD(TJ, TQ), ms, &(x[0]));
Chris@42 116 TR = VFNMS(LDK(KP250000000), TQ, TJ);
Chris@42 117 ST(&(x[WS(rs, 5)]), VADD(T9, TA), ms, &(x[WS(rs, 1)]));
Chris@42 118 TB = VFNMS(LDK(KP250000000), TA, T9);
Chris@42 119 {
Chris@42 120 V TX, TT, TH, TD;
Chris@42 121 TX = VFMA(LDK(KP559016994), TS, TR);
Chris@42 122 TT = VFNMS(LDK(KP559016994), TS, TR);
Chris@42 123 TH = VFNMS(LDK(KP559016994), TC, TB);
Chris@42 124 TD = VFMA(LDK(KP559016994), TC, TB);
Chris@42 125 ST(&(x[WS(rs, 8)]), VFNMSI(TW, TT), ms, &(x[0]));
Chris@42 126 ST(&(x[WS(rs, 2)]), VFMAI(TW, TT), ms, &(x[0]));
Chris@42 127 ST(&(x[WS(rs, 6)]), VFNMSI(TY, TX), ms, &(x[0]));
Chris@42 128 ST(&(x[WS(rs, 4)]), VFMAI(TY, TX), ms, &(x[0]));
Chris@42 129 ST(&(x[WS(rs, 9)]), VFMAI(TG, TD), ms, &(x[WS(rs, 1)]));
Chris@42 130 ST(&(x[WS(rs, 1)]), VFNMSI(TG, TD), ms, &(x[WS(rs, 1)]));
Chris@42 131 ST(&(x[WS(rs, 7)]), VFMAI(TI, TH), ms, &(x[WS(rs, 1)]));
Chris@42 132 ST(&(x[WS(rs, 3)]), VFNMSI(TI, TH), ms, &(x[WS(rs, 1)]));
Chris@42 133 }
Chris@42 134 }
Chris@42 135 }
Chris@42 136 }
Chris@42 137 }
Chris@42 138 }
Chris@42 139 }
Chris@42 140 VLEAVE();
Chris@42 141 }
Chris@42 142
Chris@42 143 static const tw_instr twinstr[] = {
Chris@42 144 VTW(0, 1),
Chris@42 145 VTW(0, 3),
Chris@42 146 VTW(0, 9),
Chris@42 147 {TW_NEXT, VL, 0}
Chris@42 148 };
Chris@42 149
Chris@42 150 static const ct_desc desc = { 10, XSIMD_STRING("t3fv_10"), twinstr, &GENUS, {39, 34, 18, 0}, 0, 0, 0 };
Chris@42 151
Chris@42 152 void XSIMD(codelet_t3fv_10) (planner *p) {
Chris@42 153 X(kdft_dit_register) (p, t3fv_10, &desc);
Chris@42 154 }
Chris@42 155 #else /* HAVE_FMA */
Chris@42 156
Chris@42 157 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3fv_10 -include t3f.h */
Chris@42 158
Chris@42 159 /*
Chris@42 160 * This function contains 57 FP additions, 42 FP multiplications,
Chris@42 161 * (or, 51 additions, 36 multiplications, 6 fused multiply/add),
Chris@42 162 * 41 stack variables, 4 constants, and 20 memory accesses
Chris@42 163 */
Chris@42 164 #include "t3f.h"
Chris@42 165
Chris@42 166 static void t3fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 167 {
Chris@42 168 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@42 169 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@42 170 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@42 171 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@42 172 {
Chris@42 173 INT m;
Chris@42 174 R *x;
Chris@42 175 x = ri;
Chris@42 176 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) {
Chris@42 177 V T1, T2, T3, Ti, T6, T7, Tx, Tb, To;
Chris@42 178 T1 = LDW(&(W[0]));
Chris@42 179 T2 = LDW(&(W[TWVL * 2]));
Chris@42 180 T3 = VZMULJ(T1, T2);
Chris@42 181 Ti = VZMUL(T1, T2);
Chris@42 182 T6 = LDW(&(W[TWVL * 4]));
Chris@42 183 T7 = VZMULJ(T3, T6);
Chris@42 184 Tx = VZMULJ(Ti, T6);
Chris@42 185 Tb = VZMULJ(T1, T6);
Chris@42 186 To = VZMULJ(T2, T6);
Chris@42 187 {
Chris@42 188 V TA, TQ, Tn, Tt, Tu, TJ, TK, TS, Ta, Tg, Th, TM, TN, TR, Tw;
Chris@42 189 V Tz, Ty;
Chris@42 190 Tw = LD(&(x[0]), ms, &(x[0]));
Chris@42 191 Ty = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@42 192 Tz = VZMULJ(Tx, Ty);
Chris@42 193 TA = VSUB(Tw, Tz);
Chris@42 194 TQ = VADD(Tw, Tz);
Chris@42 195 {
Chris@42 196 V Tk, Ts, Tm, Tq;
Chris@42 197 {
Chris@42 198 V Tj, Tr, Tl, Tp;
Chris@42 199 Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@42 200 Tk = VZMULJ(Ti, Tj);
Chris@42 201 Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@42 202 Ts = VZMULJ(T1, Tr);
Chris@42 203 Tl = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
Chris@42 204 Tm = VZMULJ(T6, Tl);
Chris@42 205 Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@42 206 Tq = VZMULJ(To, Tp);
Chris@42 207 }
Chris@42 208 Tn = VSUB(Tk, Tm);
Chris@42 209 Tt = VSUB(Tq, Ts);
Chris@42 210 Tu = VADD(Tn, Tt);
Chris@42 211 TJ = VADD(Tk, Tm);
Chris@42 212 TK = VADD(Tq, Ts);
Chris@42 213 TS = VADD(TJ, TK);
Chris@42 214 }
Chris@42 215 {
Chris@42 216 V T5, Tf, T9, Td;
Chris@42 217 {
Chris@42 218 V T4, Te, T8, Tc;
Chris@42 219 T4 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@42 220 T5 = VZMULJ(T3, T4);
Chris@42 221 Te = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@42 222 Tf = VZMULJ(T2, Te);
Chris@42 223 T8 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@42 224 T9 = VZMULJ(T7, T8);
Chris@42 225 Tc = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
Chris@42 226 Td = VZMULJ(Tb, Tc);
Chris@42 227 }
Chris@42 228 Ta = VSUB(T5, T9);
Chris@42 229 Tg = VSUB(Td, Tf);
Chris@42 230 Th = VADD(Ta, Tg);
Chris@42 231 TM = VADD(T5, T9);
Chris@42 232 TN = VADD(Td, Tf);
Chris@42 233 TR = VADD(TM, TN);
Chris@42 234 }
Chris@42 235 {
Chris@42 236 V Tv, TB, TC, TG, TI, TE, TF, TH, TD;
Chris@42 237 Tv = VMUL(LDK(KP559016994), VSUB(Th, Tu));
Chris@42 238 TB = VADD(Th, Tu);
Chris@42 239 TC = VFNMS(LDK(KP250000000), TB, TA);
Chris@42 240 TE = VSUB(Ta, Tg);
Chris@42 241 TF = VSUB(Tn, Tt);
Chris@42 242 TG = VBYI(VFMA(LDK(KP951056516), TE, VMUL(LDK(KP587785252), TF)));
Chris@42 243 TI = VBYI(VFNMS(LDK(KP587785252), TE, VMUL(LDK(KP951056516), TF)));
Chris@42 244 ST(&(x[WS(rs, 5)]), VADD(TA, TB), ms, &(x[WS(rs, 1)]));
Chris@42 245 TH = VSUB(TC, Tv);
Chris@42 246 ST(&(x[WS(rs, 3)]), VSUB(TH, TI), ms, &(x[WS(rs, 1)]));
Chris@42 247 ST(&(x[WS(rs, 7)]), VADD(TI, TH), ms, &(x[WS(rs, 1)]));
Chris@42 248 TD = VADD(Tv, TC);
Chris@42 249 ST(&(x[WS(rs, 1)]), VSUB(TD, TG), ms, &(x[WS(rs, 1)]));
Chris@42 250 ST(&(x[WS(rs, 9)]), VADD(TG, TD), ms, &(x[WS(rs, 1)]));
Chris@42 251 }
Chris@42 252 {
Chris@42 253 V TV, TT, TU, TP, TX, TL, TO, TY, TW;
Chris@42 254 TV = VMUL(LDK(KP559016994), VSUB(TR, TS));
Chris@42 255 TT = VADD(TR, TS);
Chris@42 256 TU = VFNMS(LDK(KP250000000), TT, TQ);
Chris@42 257 TL = VSUB(TJ, TK);
Chris@42 258 TO = VSUB(TM, TN);
Chris@42 259 TP = VBYI(VFNMS(LDK(KP587785252), TO, VMUL(LDK(KP951056516), TL)));
Chris@42 260 TX = VBYI(VFMA(LDK(KP951056516), TO, VMUL(LDK(KP587785252), TL)));
Chris@42 261 ST(&(x[0]), VADD(TQ, TT), ms, &(x[0]));
Chris@42 262 TY = VADD(TV, TU);
Chris@42 263 ST(&(x[WS(rs, 4)]), VADD(TX, TY), ms, &(x[0]));
Chris@42 264 ST(&(x[WS(rs, 6)]), VSUB(TY, TX), ms, &(x[0]));
Chris@42 265 TW = VSUB(TU, TV);
Chris@42 266 ST(&(x[WS(rs, 2)]), VADD(TP, TW), ms, &(x[0]));
Chris@42 267 ST(&(x[WS(rs, 8)]), VSUB(TW, TP), ms, &(x[0]));
Chris@42 268 }
Chris@42 269 }
Chris@42 270 }
Chris@42 271 }
Chris@42 272 VLEAVE();
Chris@42 273 }
Chris@42 274
Chris@42 275 static const tw_instr twinstr[] = {
Chris@42 276 VTW(0, 1),
Chris@42 277 VTW(0, 3),
Chris@42 278 VTW(0, 9),
Chris@42 279 {TW_NEXT, VL, 0}
Chris@42 280 };
Chris@42 281
Chris@42 282 static const ct_desc desc = { 10, XSIMD_STRING("t3fv_10"), twinstr, &GENUS, {51, 36, 6, 0}, 0, 0, 0 };
Chris@42 283
Chris@42 284 void XSIMD(codelet_t3fv_10) (planner *p) {
Chris@42 285 X(kdft_dit_register) (p, t3fv_10, &desc);
Chris@42 286 }
Chris@42 287 #endif /* HAVE_FMA */