annotate src/fftw-3.3.5/dft/simd/common/t3bv_5.c @ 84:08ae793730bd

Add null config files
author Chris Cannam
date Mon, 02 Mar 2020 14:03:47 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@42 22 /* Generated on Sat Jul 30 16:45:01 EDT 2016 */
Chris@42 23
Chris@42 24 #include "codelet-dft.h"
Chris@42 25
Chris@42 26 #ifdef HAVE_FMA
Chris@42 27
Chris@42 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 5 -name t3bv_5 -include t3b.h -sign 1 */
Chris@42 29
Chris@42 30 /*
Chris@42 31 * This function contains 22 FP additions, 23 FP multiplications,
Chris@42 32 * (or, 13 additions, 14 multiplications, 9 fused multiply/add),
Chris@42 33 * 30 stack variables, 4 constants, and 10 memory accesses
Chris@42 34 */
Chris@42 35 #include "t3b.h"
Chris@42 36
Chris@42 37 static void t3bv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 38 {
Chris@42 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@42 40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@42 41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@42 42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@42 43 {
Chris@42 44 INT m;
Chris@42 45 R *x;
Chris@42 46 x = ii;
Chris@42 47 for (m = mb, W = W + (mb * ((TWVL / VL) * 4)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 4), MAKE_VOLATILE_STRIDE(5, rs)) {
Chris@42 48 V T2, T5, T1, T3, Td, T7, Tb;
Chris@42 49 T2 = LDW(&(W[0]));
Chris@42 50 T5 = LDW(&(W[TWVL * 2]));
Chris@42 51 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@42 52 T3 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@42 53 Td = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@42 54 T7 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@42 55 Tb = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@42 56 {
Chris@42 57 V Ta, T6, T4, Te, Tc, T8;
Chris@42 58 Ta = VZMULJ(T2, T5);
Chris@42 59 T6 = VZMUL(T2, T5);
Chris@42 60 T4 = VZMUL(T2, T3);
Chris@42 61 Te = VZMUL(T5, Td);
Chris@42 62 Tc = VZMUL(Ta, Tb);
Chris@42 63 T8 = VZMUL(T6, T7);
Chris@42 64 {
Chris@42 65 V Tf, Tl, T9, Tk;
Chris@42 66 Tf = VADD(Tc, Te);
Chris@42 67 Tl = VSUB(Tc, Te);
Chris@42 68 T9 = VADD(T4, T8);
Chris@42 69 Tk = VSUB(T4, T8);
Chris@42 70 {
Chris@42 71 V Ti, Tg, To, Tm, Th, Tn, Tj;
Chris@42 72 Ti = VSUB(T9, Tf);
Chris@42 73 Tg = VADD(T9, Tf);
Chris@42 74 To = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tk, Tl));
Chris@42 75 Tm = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tl, Tk));
Chris@42 76 Th = VFNMS(LDK(KP250000000), Tg, T1);
Chris@42 77 ST(&(x[0]), VADD(T1, Tg), ms, &(x[0]));
Chris@42 78 Tn = VFNMS(LDK(KP559016994), Ti, Th);
Chris@42 79 Tj = VFMA(LDK(KP559016994), Ti, Th);
Chris@42 80 ST(&(x[WS(rs, 2)]), VFNMSI(To, Tn), ms, &(x[0]));
Chris@42 81 ST(&(x[WS(rs, 3)]), VFMAI(To, Tn), ms, &(x[WS(rs, 1)]));
Chris@42 82 ST(&(x[WS(rs, 4)]), VFNMSI(Tm, Tj), ms, &(x[0]));
Chris@42 83 ST(&(x[WS(rs, 1)]), VFMAI(Tm, Tj), ms, &(x[WS(rs, 1)]));
Chris@42 84 }
Chris@42 85 }
Chris@42 86 }
Chris@42 87 }
Chris@42 88 }
Chris@42 89 VLEAVE();
Chris@42 90 }
Chris@42 91
Chris@42 92 static const tw_instr twinstr[] = {
Chris@42 93 VTW(0, 1),
Chris@42 94 VTW(0, 3),
Chris@42 95 {TW_NEXT, VL, 0}
Chris@42 96 };
Chris@42 97
Chris@42 98 static const ct_desc desc = { 5, XSIMD_STRING("t3bv_5"), twinstr, &GENUS, {13, 14, 9, 0}, 0, 0, 0 };
Chris@42 99
Chris@42 100 void XSIMD(codelet_t3bv_5) (planner *p) {
Chris@42 101 X(kdft_dit_register) (p, t3bv_5, &desc);
Chris@42 102 }
Chris@42 103 #else /* HAVE_FMA */
Chris@42 104
Chris@42 105 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 5 -name t3bv_5 -include t3b.h -sign 1 */
Chris@42 106
Chris@42 107 /*
Chris@42 108 * This function contains 22 FP additions, 18 FP multiplications,
Chris@42 109 * (or, 19 additions, 15 multiplications, 3 fused multiply/add),
Chris@42 110 * 24 stack variables, 4 constants, and 10 memory accesses
Chris@42 111 */
Chris@42 112 #include "t3b.h"
Chris@42 113
Chris@42 114 static void t3bv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 115 {
Chris@42 116 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@42 117 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@42 118 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@42 119 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@42 120 {
Chris@42 121 INT m;
Chris@42 122 R *x;
Chris@42 123 x = ii;
Chris@42 124 for (m = mb, W = W + (mb * ((TWVL / VL) * 4)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 4), MAKE_VOLATILE_STRIDE(5, rs)) {
Chris@42 125 V T1, T4, T5, T9;
Chris@42 126 T1 = LDW(&(W[0]));
Chris@42 127 T4 = LDW(&(W[TWVL * 2]));
Chris@42 128 T5 = VZMUL(T1, T4);
Chris@42 129 T9 = VZMULJ(T1, T4);
Chris@42 130 {
Chris@42 131 V Tj, T8, Te, Tg, Th, Tk;
Chris@42 132 Tj = LD(&(x[0]), ms, &(x[0]));
Chris@42 133 {
Chris@42 134 V T3, Td, T7, Tb;
Chris@42 135 {
Chris@42 136 V T2, Tc, T6, Ta;
Chris@42 137 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@42 138 T3 = VZMUL(T1, T2);
Chris@42 139 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@42 140 Td = VZMUL(T4, Tc);
Chris@42 141 T6 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@42 142 T7 = VZMUL(T5, T6);
Chris@42 143 Ta = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@42 144 Tb = VZMUL(T9, Ta);
Chris@42 145 }
Chris@42 146 T8 = VSUB(T3, T7);
Chris@42 147 Te = VSUB(Tb, Td);
Chris@42 148 Tg = VADD(T3, T7);
Chris@42 149 Th = VADD(Tb, Td);
Chris@42 150 Tk = VADD(Tg, Th);
Chris@42 151 }
Chris@42 152 ST(&(x[0]), VADD(Tj, Tk), ms, &(x[0]));
Chris@42 153 {
Chris@42 154 V Tf, Tn, Tm, To, Ti, Tl;
Chris@42 155 Tf = VBYI(VFMA(LDK(KP951056516), T8, VMUL(LDK(KP587785252), Te)));
Chris@42 156 Tn = VBYI(VFNMS(LDK(KP951056516), Te, VMUL(LDK(KP587785252), T8)));
Chris@42 157 Ti = VMUL(LDK(KP559016994), VSUB(Tg, Th));
Chris@42 158 Tl = VFNMS(LDK(KP250000000), Tk, Tj);
Chris@42 159 Tm = VADD(Ti, Tl);
Chris@42 160 To = VSUB(Tl, Ti);
Chris@42 161 ST(&(x[WS(rs, 1)]), VADD(Tf, Tm), ms, &(x[WS(rs, 1)]));
Chris@42 162 ST(&(x[WS(rs, 3)]), VSUB(To, Tn), ms, &(x[WS(rs, 1)]));
Chris@42 163 ST(&(x[WS(rs, 4)]), VSUB(Tm, Tf), ms, &(x[0]));
Chris@42 164 ST(&(x[WS(rs, 2)]), VADD(Tn, To), ms, &(x[0]));
Chris@42 165 }
Chris@42 166 }
Chris@42 167 }
Chris@42 168 }
Chris@42 169 VLEAVE();
Chris@42 170 }
Chris@42 171
Chris@42 172 static const tw_instr twinstr[] = {
Chris@42 173 VTW(0, 1),
Chris@42 174 VTW(0, 3),
Chris@42 175 {TW_NEXT, VL, 0}
Chris@42 176 };
Chris@42 177
Chris@42 178 static const ct_desc desc = { 5, XSIMD_STRING("t3bv_5"), twinstr, &GENUS, {19, 15, 3, 0}, 0, 0, 0 };
Chris@42 179
Chris@42 180 void XSIMD(codelet_t3bv_5) (planner *p) {
Chris@42 181 X(kdft_dit_register) (p, t3bv_5, &desc);
Chris@42 182 }
Chris@42 183 #endif /* HAVE_FMA */