annotate src/fftw-3.3.5/dft/simd/common/t2bv_8.c @ 84:08ae793730bd

Add null config files
author Chris Cannam
date Mon, 02 Mar 2020 14:03:47 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@42 22 /* Generated on Sat Jul 30 16:44:27 EDT 2016 */
Chris@42 23
Chris@42 24 #include "codelet-dft.h"
Chris@42 25
Chris@42 26 #ifdef HAVE_FMA
Chris@42 27
Chris@42 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t2bv_8 -include t2b.h -sign 1 */
Chris@42 29
Chris@42 30 /*
Chris@42 31 * This function contains 33 FP additions, 24 FP multiplications,
Chris@42 32 * (or, 23 additions, 14 multiplications, 10 fused multiply/add),
Chris@42 33 * 36 stack variables, 1 constants, and 16 memory accesses
Chris@42 34 */
Chris@42 35 #include "t2b.h"
Chris@42 36
Chris@42 37 static void t2bv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 38 {
Chris@42 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@42 40 {
Chris@42 41 INT m;
Chris@42 42 R *x;
Chris@42 43 x = ii;
Chris@42 44 for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
Chris@42 45 V T1, T2, Th, Tj, T5, T7, Ta, Tc;
Chris@42 46 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@42 47 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@42 48 Th = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@42 49 Tj = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@42 50 T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@42 51 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@42 52 Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@42 53 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@42 54 {
Chris@42 55 V T3, Ti, Tk, T6, T8, Tb, Td;
Chris@42 56 T3 = BYTW(&(W[TWVL * 6]), T2);
Chris@42 57 Ti = BYTW(&(W[TWVL * 2]), Th);
Chris@42 58 Tk = BYTW(&(W[TWVL * 10]), Tj);
Chris@42 59 T6 = BYTW(&(W[0]), T5);
Chris@42 60 T8 = BYTW(&(W[TWVL * 8]), T7);
Chris@42 61 Tb = BYTW(&(W[TWVL * 12]), Ta);
Chris@42 62 Td = BYTW(&(W[TWVL * 4]), Tc);
Chris@42 63 {
Chris@42 64 V Tq, T4, Tr, Tl, Tt, T9, Tu, Te, Tw, Ts;
Chris@42 65 Tq = VADD(T1, T3);
Chris@42 66 T4 = VSUB(T1, T3);
Chris@42 67 Tr = VADD(Ti, Tk);
Chris@42 68 Tl = VSUB(Ti, Tk);
Chris@42 69 Tt = VADD(T6, T8);
Chris@42 70 T9 = VSUB(T6, T8);
Chris@42 71 Tu = VADD(Tb, Td);
Chris@42 72 Te = VSUB(Tb, Td);
Chris@42 73 Tw = VADD(Tq, Tr);
Chris@42 74 Ts = VSUB(Tq, Tr);
Chris@42 75 {
Chris@42 76 V Tx, Tv, Tm, Tf;
Chris@42 77 Tx = VADD(Tt, Tu);
Chris@42 78 Tv = VSUB(Tt, Tu);
Chris@42 79 Tm = VSUB(T9, Te);
Chris@42 80 Tf = VADD(T9, Te);
Chris@42 81 {
Chris@42 82 V Tp, Tn, To, Tg;
Chris@42 83 ST(&(x[0]), VADD(Tw, Tx), ms, &(x[0]));
Chris@42 84 ST(&(x[WS(rs, 4)]), VSUB(Tw, Tx), ms, &(x[0]));
Chris@42 85 ST(&(x[WS(rs, 2)]), VFMAI(Tv, Ts), ms, &(x[0]));
Chris@42 86 ST(&(x[WS(rs, 6)]), VFNMSI(Tv, Ts), ms, &(x[0]));
Chris@42 87 Tp = VFMA(LDK(KP707106781), Tm, Tl);
Chris@42 88 Tn = VFNMS(LDK(KP707106781), Tm, Tl);
Chris@42 89 To = VFMA(LDK(KP707106781), Tf, T4);
Chris@42 90 Tg = VFNMS(LDK(KP707106781), Tf, T4);
Chris@42 91 ST(&(x[WS(rs, 1)]), VFMAI(Tp, To), ms, &(x[WS(rs, 1)]));
Chris@42 92 ST(&(x[WS(rs, 7)]), VFNMSI(Tp, To), ms, &(x[WS(rs, 1)]));
Chris@42 93 ST(&(x[WS(rs, 5)]), VFMAI(Tn, Tg), ms, &(x[WS(rs, 1)]));
Chris@42 94 ST(&(x[WS(rs, 3)]), VFNMSI(Tn, Tg), ms, &(x[WS(rs, 1)]));
Chris@42 95 }
Chris@42 96 }
Chris@42 97 }
Chris@42 98 }
Chris@42 99 }
Chris@42 100 }
Chris@42 101 VLEAVE();
Chris@42 102 }
Chris@42 103
Chris@42 104 static const tw_instr twinstr[] = {
Chris@42 105 VTW(0, 1),
Chris@42 106 VTW(0, 2),
Chris@42 107 VTW(0, 3),
Chris@42 108 VTW(0, 4),
Chris@42 109 VTW(0, 5),
Chris@42 110 VTW(0, 6),
Chris@42 111 VTW(0, 7),
Chris@42 112 {TW_NEXT, VL, 0}
Chris@42 113 };
Chris@42 114
Chris@42 115 static const ct_desc desc = { 8, XSIMD_STRING("t2bv_8"), twinstr, &GENUS, {23, 14, 10, 0}, 0, 0, 0 };
Chris@42 116
Chris@42 117 void XSIMD(codelet_t2bv_8) (planner *p) {
Chris@42 118 X(kdft_dit_register) (p, t2bv_8, &desc);
Chris@42 119 }
Chris@42 120 #else /* HAVE_FMA */
Chris@42 121
Chris@42 122 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t2bv_8 -include t2b.h -sign 1 */
Chris@42 123
Chris@42 124 /*
Chris@42 125 * This function contains 33 FP additions, 16 FP multiplications,
Chris@42 126 * (or, 33 additions, 16 multiplications, 0 fused multiply/add),
Chris@42 127 * 24 stack variables, 1 constants, and 16 memory accesses
Chris@42 128 */
Chris@42 129 #include "t2b.h"
Chris@42 130
Chris@42 131 static void t2bv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 132 {
Chris@42 133 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@42 134 {
Chris@42 135 INT m;
Chris@42 136 R *x;
Chris@42 137 x = ii;
Chris@42 138 for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
Chris@42 139 V Tl, Tq, Tg, Tr, T5, Tt, Ta, Tu, Ti, Tk, Tj;
Chris@42 140 Ti = LD(&(x[0]), ms, &(x[0]));
Chris@42 141 Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@42 142 Tk = BYTW(&(W[TWVL * 6]), Tj);
Chris@42 143 Tl = VSUB(Ti, Tk);
Chris@42 144 Tq = VADD(Ti, Tk);
Chris@42 145 {
Chris@42 146 V Td, Tf, Tc, Te;
Chris@42 147 Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@42 148 Td = BYTW(&(W[TWVL * 2]), Tc);
Chris@42 149 Te = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@42 150 Tf = BYTW(&(W[TWVL * 10]), Te);
Chris@42 151 Tg = VSUB(Td, Tf);
Chris@42 152 Tr = VADD(Td, Tf);
Chris@42 153 }
Chris@42 154 {
Chris@42 155 V T2, T4, T1, T3;
Chris@42 156 T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@42 157 T2 = BYTW(&(W[0]), T1);
Chris@42 158 T3 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@42 159 T4 = BYTW(&(W[TWVL * 8]), T3);
Chris@42 160 T5 = VSUB(T2, T4);
Chris@42 161 Tt = VADD(T2, T4);
Chris@42 162 }
Chris@42 163 {
Chris@42 164 V T7, T9, T6, T8;
Chris@42 165 T6 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@42 166 T7 = BYTW(&(W[TWVL * 12]), T6);
Chris@42 167 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@42 168 T9 = BYTW(&(W[TWVL * 4]), T8);
Chris@42 169 Ta = VSUB(T7, T9);
Chris@42 170 Tu = VADD(T7, T9);
Chris@42 171 }
Chris@42 172 {
Chris@42 173 V Ts, Tv, Tw, Tx;
Chris@42 174 Ts = VSUB(Tq, Tr);
Chris@42 175 Tv = VBYI(VSUB(Tt, Tu));
Chris@42 176 ST(&(x[WS(rs, 6)]), VSUB(Ts, Tv), ms, &(x[0]));
Chris@42 177 ST(&(x[WS(rs, 2)]), VADD(Ts, Tv), ms, &(x[0]));
Chris@42 178 Tw = VADD(Tq, Tr);
Chris@42 179 Tx = VADD(Tt, Tu);
Chris@42 180 ST(&(x[WS(rs, 4)]), VSUB(Tw, Tx), ms, &(x[0]));
Chris@42 181 ST(&(x[0]), VADD(Tw, Tx), ms, &(x[0]));
Chris@42 182 {
Chris@42 183 V Th, To, Tn, Tp, Tb, Tm;
Chris@42 184 Tb = VMUL(LDK(KP707106781), VSUB(T5, Ta));
Chris@42 185 Th = VBYI(VSUB(Tb, Tg));
Chris@42 186 To = VBYI(VADD(Tg, Tb));
Chris@42 187 Tm = VMUL(LDK(KP707106781), VADD(T5, Ta));
Chris@42 188 Tn = VSUB(Tl, Tm);
Chris@42 189 Tp = VADD(Tl, Tm);
Chris@42 190 ST(&(x[WS(rs, 3)]), VADD(Th, Tn), ms, &(x[WS(rs, 1)]));
Chris@42 191 ST(&(x[WS(rs, 7)]), VSUB(Tp, To), ms, &(x[WS(rs, 1)]));
Chris@42 192 ST(&(x[WS(rs, 5)]), VSUB(Tn, Th), ms, &(x[WS(rs, 1)]));
Chris@42 193 ST(&(x[WS(rs, 1)]), VADD(To, Tp), ms, &(x[WS(rs, 1)]));
Chris@42 194 }
Chris@42 195 }
Chris@42 196 }
Chris@42 197 }
Chris@42 198 VLEAVE();
Chris@42 199 }
Chris@42 200
Chris@42 201 static const tw_instr twinstr[] = {
Chris@42 202 VTW(0, 1),
Chris@42 203 VTW(0, 2),
Chris@42 204 VTW(0, 3),
Chris@42 205 VTW(0, 4),
Chris@42 206 VTW(0, 5),
Chris@42 207 VTW(0, 6),
Chris@42 208 VTW(0, 7),
Chris@42 209 {TW_NEXT, VL, 0}
Chris@42 210 };
Chris@42 211
Chris@42 212 static const ct_desc desc = { 8, XSIMD_STRING("t2bv_8"), twinstr, &GENUS, {33, 16, 0, 0}, 0, 0, 0 };
Chris@42 213
Chris@42 214 void XSIMD(codelet_t2bv_8) (planner *p) {
Chris@42 215 X(kdft_dit_register) (p, t2bv_8, &desc);
Chris@42 216 }
Chris@42 217 #endif /* HAVE_FMA */