annotate src/fftw-3.3.5/dft/simd/common/t1sv_8.c @ 84:08ae793730bd

Add null config files
author Chris Cannam
date Mon, 02 Mar 2020 14:03:47 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@42 22 /* Generated on Sat Jul 30 16:45:05 EDT 2016 */
Chris@42 23
Chris@42 24 #include "codelet-dft.h"
Chris@42 25
Chris@42 26 #ifdef HAVE_FMA
Chris@42 27
Chris@42 28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1sv_8 -include ts.h */
Chris@42 29
Chris@42 30 /*
Chris@42 31 * This function contains 66 FP additions, 36 FP multiplications,
Chris@42 32 * (or, 44 additions, 14 multiplications, 22 fused multiply/add),
Chris@42 33 * 59 stack variables, 1 constants, and 32 memory accesses
Chris@42 34 */
Chris@42 35 #include "ts.h"
Chris@42 36
Chris@42 37 static void t1sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 38 {
Chris@42 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@42 40 {
Chris@42 41 INT m;
Chris@42 42 for (m = mb, W = W + (mb * 14); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 14), MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@42 43 V T1, T1m, T1l, T7, TS, Tk, TQ, Te, To, Tr, Tu, T14, TF, Tx, T16;
Chris@42 44 V TL, Tt, TW, Tp, Tq, Tw;
Chris@42 45 {
Chris@42 46 V T3, T6, T2, T5;
Chris@42 47 T1 = LD(&(ri[0]), ms, &(ri[0]));
Chris@42 48 T1m = LD(&(ii[0]), ms, &(ii[0]));
Chris@42 49 T3 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
Chris@42 50 T6 = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
Chris@42 51 T2 = LDW(&(W[TWVL * 6]));
Chris@42 52 T5 = LDW(&(W[TWVL * 7]));
Chris@42 53 {
Chris@42 54 V Tg, Tj, Ti, Ta, Td, T1k, T4, T9, Tc, TR, Th, Tf;
Chris@42 55 Tg = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
Chris@42 56 Tj = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
Chris@42 57 Tf = LDW(&(W[TWVL * 10]));
Chris@42 58 Ti = LDW(&(W[TWVL * 11]));
Chris@42 59 Ta = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
Chris@42 60 Td = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
Chris@42 61 T1k = VMUL(T2, T6);
Chris@42 62 T4 = VMUL(T2, T3);
Chris@42 63 T9 = LDW(&(W[TWVL * 2]));
Chris@42 64 Tc = LDW(&(W[TWVL * 3]));
Chris@42 65 TR = VMUL(Tf, Tj);
Chris@42 66 Th = VMUL(Tf, Tg);
Chris@42 67 {
Chris@42 68 V TB, TE, TH, TK, TG, TD, TJ, T13, TC, TA, TP, Tb, T15, TI, Tn;
Chris@42 69 TB = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
Chris@42 70 TE = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
Chris@42 71 T1l = VFNMS(T5, T3, T1k);
Chris@42 72 T7 = VFMA(T5, T6, T4);
Chris@42 73 TP = VMUL(T9, Td);
Chris@42 74 Tb = VMUL(T9, Ta);
Chris@42 75 TS = VFNMS(Ti, Tg, TR);
Chris@42 76 Tk = VFMA(Ti, Tj, Th);
Chris@42 77 TA = LDW(&(W[TWVL * 12]));
Chris@42 78 TH = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
Chris@42 79 TK = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
Chris@42 80 TG = LDW(&(W[TWVL * 4]));
Chris@42 81 TQ = VFNMS(Tc, Ta, TP);
Chris@42 82 Te = VFMA(Tc, Td, Tb);
Chris@42 83 TD = LDW(&(W[TWVL * 13]));
Chris@42 84 TJ = LDW(&(W[TWVL * 5]));
Chris@42 85 T13 = VMUL(TA, TE);
Chris@42 86 TC = VMUL(TA, TB);
Chris@42 87 To = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
Chris@42 88 T15 = VMUL(TG, TK);
Chris@42 89 TI = VMUL(TG, TH);
Chris@42 90 Tr = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
Chris@42 91 Tn = LDW(&(W[0]));
Chris@42 92 Tu = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
Chris@42 93 T14 = VFNMS(TD, TB, T13);
Chris@42 94 TF = VFMA(TD, TE, TC);
Chris@42 95 Tx = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
Chris@42 96 T16 = VFNMS(TJ, TH, T15);
Chris@42 97 TL = VFMA(TJ, TK, TI);
Chris@42 98 Tt = LDW(&(W[TWVL * 8]));
Chris@42 99 TW = VMUL(Tn, Tr);
Chris@42 100 Tp = VMUL(Tn, To);
Chris@42 101 Tq = LDW(&(W[TWVL * 1]));
Chris@42 102 Tw = LDW(&(W[TWVL * 9]));
Chris@42 103 }
Chris@42 104 }
Chris@42 105 }
Chris@42 106 {
Chris@42 107 V T8, T1g, TM, T1j, TX, Ts, T1n, T1r, T1s, Tl, T1c, T18, TZ, Ty, T1a;
Chris@42 108 V TU;
Chris@42 109 {
Chris@42 110 V TO, T17, T12, TY, Tv, TT;
Chris@42 111 T8 = VADD(T1, T7);
Chris@42 112 TO = VSUB(T1, T7);
Chris@42 113 T17 = VSUB(T14, T16);
Chris@42 114 T1g = VADD(T14, T16);
Chris@42 115 TM = VADD(TF, TL);
Chris@42 116 T12 = VSUB(TF, TL);
Chris@42 117 TY = VMUL(Tt, Tx);
Chris@42 118 Tv = VMUL(Tt, Tu);
Chris@42 119 TT = VSUB(TQ, TS);
Chris@42 120 T1j = VADD(TQ, TS);
Chris@42 121 TX = VFNMS(Tq, To, TW);
Chris@42 122 Ts = VFMA(Tq, Tr, Tp);
Chris@42 123 T1n = VADD(T1l, T1m);
Chris@42 124 T1r = VSUB(T1m, T1l);
Chris@42 125 T1s = VSUB(Te, Tk);
Chris@42 126 Tl = VADD(Te, Tk);
Chris@42 127 T1c = VADD(T12, T17);
Chris@42 128 T18 = VSUB(T12, T17);
Chris@42 129 TZ = VFNMS(Tw, Tu, TY);
Chris@42 130 Ty = VFMA(Tw, Tx, Tv);
Chris@42 131 T1a = VSUB(TO, TT);
Chris@42 132 TU = VADD(TO, TT);
Chris@42 133 }
Chris@42 134 {
Chris@42 135 V T1v, T1t, Tm, T1e, T1o, T1q, TN, T1p, T1d, T1u, T19, T1w, T1i, T1h;
Chris@42 136 {
Chris@42 137 V T10, T1f, Tz, TV, T11, T1b;
Chris@42 138 T1v = VADD(T1s, T1r);
Chris@42 139 T1t = VSUB(T1r, T1s);
Chris@42 140 T10 = VSUB(TX, TZ);
Chris@42 141 T1f = VADD(TX, TZ);
Chris@42 142 Tz = VADD(Ts, Ty);
Chris@42 143 TV = VSUB(Ts, Ty);
Chris@42 144 T11 = VADD(TV, T10);
Chris@42 145 T1b = VSUB(T10, TV);
Chris@42 146 Tm = VADD(T8, Tl);
Chris@42 147 T1e = VSUB(T8, Tl);
Chris@42 148 T1o = VADD(T1j, T1n);
Chris@42 149 T1q = VSUB(T1n, T1j);
Chris@42 150 TN = VADD(Tz, TM);
Chris@42 151 T1p = VSUB(TM, Tz);
Chris@42 152 T1d = VSUB(T1b, T1c);
Chris@42 153 T1u = VADD(T1b, T1c);
Chris@42 154 T19 = VADD(T11, T18);
Chris@42 155 T1w = VSUB(T18, T11);
Chris@42 156 T1i = VADD(T1f, T1g);
Chris@42 157 T1h = VSUB(T1f, T1g);
Chris@42 158 }
Chris@42 159 ST(&(ii[WS(rs, 6)]), VSUB(T1q, T1p), ms, &(ii[0]));
Chris@42 160 ST(&(ri[0]), VADD(Tm, TN), ms, &(ri[0]));
Chris@42 161 ST(&(ri[WS(rs, 4)]), VSUB(Tm, TN), ms, &(ri[0]));
Chris@42 162 ST(&(ii[WS(rs, 1)]), VFMA(LDK(KP707106781), T1u, T1t), ms, &(ii[WS(rs, 1)]));
Chris@42 163 ST(&(ii[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1u, T1t), ms, &(ii[WS(rs, 1)]));
Chris@42 164 ST(&(ri[WS(rs, 3)]), VFMA(LDK(KP707106781), T1d, T1a), ms, &(ri[WS(rs, 1)]));
Chris@42 165 ST(&(ri[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1d, T1a), ms, &(ri[WS(rs, 1)]));
Chris@42 166 ST(&(ii[WS(rs, 3)]), VFMA(LDK(KP707106781), T1w, T1v), ms, &(ii[WS(rs, 1)]));
Chris@42 167 ST(&(ii[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1w, T1v), ms, &(ii[WS(rs, 1)]));
Chris@42 168 ST(&(ri[WS(rs, 1)]), VFMA(LDK(KP707106781), T19, TU), ms, &(ri[WS(rs, 1)]));
Chris@42 169 ST(&(ri[WS(rs, 5)]), VFNMS(LDK(KP707106781), T19, TU), ms, &(ri[WS(rs, 1)]));
Chris@42 170 ST(&(ri[WS(rs, 6)]), VSUB(T1e, T1h), ms, &(ri[0]));
Chris@42 171 ST(&(ii[0]), VADD(T1i, T1o), ms, &(ii[0]));
Chris@42 172 ST(&(ii[WS(rs, 4)]), VSUB(T1o, T1i), ms, &(ii[0]));
Chris@42 173 ST(&(ri[WS(rs, 2)]), VADD(T1e, T1h), ms, &(ri[0]));
Chris@42 174 ST(&(ii[WS(rs, 2)]), VADD(T1p, T1q), ms, &(ii[0]));
Chris@42 175 }
Chris@42 176 }
Chris@42 177 }
Chris@42 178 }
Chris@42 179 VLEAVE();
Chris@42 180 }
Chris@42 181
Chris@42 182 static const tw_instr twinstr[] = {
Chris@42 183 VTW(0, 1),
Chris@42 184 VTW(0, 2),
Chris@42 185 VTW(0, 3),
Chris@42 186 VTW(0, 4),
Chris@42 187 VTW(0, 5),
Chris@42 188 VTW(0, 6),
Chris@42 189 VTW(0, 7),
Chris@42 190 {TW_NEXT, (2 * VL), 0}
Chris@42 191 };
Chris@42 192
Chris@42 193 static const ct_desc desc = { 8, XSIMD_STRING("t1sv_8"), twinstr, &GENUS, {44, 14, 22, 0}, 0, 0, 0 };
Chris@42 194
Chris@42 195 void XSIMD(codelet_t1sv_8) (planner *p) {
Chris@42 196 X(kdft_dit_register) (p, t1sv_8, &desc);
Chris@42 197 }
Chris@42 198 #else /* HAVE_FMA */
Chris@42 199
Chris@42 200 /* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1sv_8 -include ts.h */
Chris@42 201
Chris@42 202 /*
Chris@42 203 * This function contains 66 FP additions, 32 FP multiplications,
Chris@42 204 * (or, 52 additions, 18 multiplications, 14 fused multiply/add),
Chris@42 205 * 28 stack variables, 1 constants, and 32 memory accesses
Chris@42 206 */
Chris@42 207 #include "ts.h"
Chris@42 208
Chris@42 209 static void t1sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 210 {
Chris@42 211 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@42 212 {
Chris@42 213 INT m;
Chris@42 214 for (m = mb, W = W + (mb * 14); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 14), MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@42 215 V T7, T1e, TH, T19, TF, T13, TR, TU, Ti, T1f, TK, T16, Tu, T12, TM;
Chris@42 216 V TP;
Chris@42 217 {
Chris@42 218 V T1, T18, T6, T17;
Chris@42 219 T1 = LD(&(ri[0]), ms, &(ri[0]));
Chris@42 220 T18 = LD(&(ii[0]), ms, &(ii[0]));
Chris@42 221 {
Chris@42 222 V T3, T5, T2, T4;
Chris@42 223 T3 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
Chris@42 224 T5 = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
Chris@42 225 T2 = LDW(&(W[TWVL * 6]));
Chris@42 226 T4 = LDW(&(W[TWVL * 7]));
Chris@42 227 T6 = VFMA(T2, T3, VMUL(T4, T5));
Chris@42 228 T17 = VFNMS(T4, T3, VMUL(T2, T5));
Chris@42 229 }
Chris@42 230 T7 = VADD(T1, T6);
Chris@42 231 T1e = VSUB(T18, T17);
Chris@42 232 TH = VSUB(T1, T6);
Chris@42 233 T19 = VADD(T17, T18);
Chris@42 234 }
Chris@42 235 {
Chris@42 236 V Tz, TS, TE, TT;
Chris@42 237 {
Chris@42 238 V Tw, Ty, Tv, Tx;
Chris@42 239 Tw = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
Chris@42 240 Ty = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
Chris@42 241 Tv = LDW(&(W[TWVL * 12]));
Chris@42 242 Tx = LDW(&(W[TWVL * 13]));
Chris@42 243 Tz = VFMA(Tv, Tw, VMUL(Tx, Ty));
Chris@42 244 TS = VFNMS(Tx, Tw, VMUL(Tv, Ty));
Chris@42 245 }
Chris@42 246 {
Chris@42 247 V TB, TD, TA, TC;
Chris@42 248 TB = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
Chris@42 249 TD = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
Chris@42 250 TA = LDW(&(W[TWVL * 4]));
Chris@42 251 TC = LDW(&(W[TWVL * 5]));
Chris@42 252 TE = VFMA(TA, TB, VMUL(TC, TD));
Chris@42 253 TT = VFNMS(TC, TB, VMUL(TA, TD));
Chris@42 254 }
Chris@42 255 TF = VADD(Tz, TE);
Chris@42 256 T13 = VADD(TS, TT);
Chris@42 257 TR = VSUB(Tz, TE);
Chris@42 258 TU = VSUB(TS, TT);
Chris@42 259 }
Chris@42 260 {
Chris@42 261 V Tc, TI, Th, TJ;
Chris@42 262 {
Chris@42 263 V T9, Tb, T8, Ta;
Chris@42 264 T9 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
Chris@42 265 Tb = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
Chris@42 266 T8 = LDW(&(W[TWVL * 2]));
Chris@42 267 Ta = LDW(&(W[TWVL * 3]));
Chris@42 268 Tc = VFMA(T8, T9, VMUL(Ta, Tb));
Chris@42 269 TI = VFNMS(Ta, T9, VMUL(T8, Tb));
Chris@42 270 }
Chris@42 271 {
Chris@42 272 V Te, Tg, Td, Tf;
Chris@42 273 Te = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
Chris@42 274 Tg = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
Chris@42 275 Td = LDW(&(W[TWVL * 10]));
Chris@42 276 Tf = LDW(&(W[TWVL * 11]));
Chris@42 277 Th = VFMA(Td, Te, VMUL(Tf, Tg));
Chris@42 278 TJ = VFNMS(Tf, Te, VMUL(Td, Tg));
Chris@42 279 }
Chris@42 280 Ti = VADD(Tc, Th);
Chris@42 281 T1f = VSUB(Tc, Th);
Chris@42 282 TK = VSUB(TI, TJ);
Chris@42 283 T16 = VADD(TI, TJ);
Chris@42 284 }
Chris@42 285 {
Chris@42 286 V To, TN, Tt, TO;
Chris@42 287 {
Chris@42 288 V Tl, Tn, Tk, Tm;
Chris@42 289 Tl = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
Chris@42 290 Tn = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
Chris@42 291 Tk = LDW(&(W[0]));
Chris@42 292 Tm = LDW(&(W[TWVL * 1]));
Chris@42 293 To = VFMA(Tk, Tl, VMUL(Tm, Tn));
Chris@42 294 TN = VFNMS(Tm, Tl, VMUL(Tk, Tn));
Chris@42 295 }
Chris@42 296 {
Chris@42 297 V Tq, Ts, Tp, Tr;
Chris@42 298 Tq = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
Chris@42 299 Ts = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
Chris@42 300 Tp = LDW(&(W[TWVL * 8]));
Chris@42 301 Tr = LDW(&(W[TWVL * 9]));
Chris@42 302 Tt = VFMA(Tp, Tq, VMUL(Tr, Ts));
Chris@42 303 TO = VFNMS(Tr, Tq, VMUL(Tp, Ts));
Chris@42 304 }
Chris@42 305 Tu = VADD(To, Tt);
Chris@42 306 T12 = VADD(TN, TO);
Chris@42 307 TM = VSUB(To, Tt);
Chris@42 308 TP = VSUB(TN, TO);
Chris@42 309 }
Chris@42 310 {
Chris@42 311 V Tj, TG, T1b, T1c;
Chris@42 312 Tj = VADD(T7, Ti);
Chris@42 313 TG = VADD(Tu, TF);
Chris@42 314 ST(&(ri[WS(rs, 4)]), VSUB(Tj, TG), ms, &(ri[0]));
Chris@42 315 ST(&(ri[0]), VADD(Tj, TG), ms, &(ri[0]));
Chris@42 316 {
Chris@42 317 V T15, T1a, T11, T14;
Chris@42 318 T15 = VADD(T12, T13);
Chris@42 319 T1a = VADD(T16, T19);
Chris@42 320 ST(&(ii[0]), VADD(T15, T1a), ms, &(ii[0]));
Chris@42 321 ST(&(ii[WS(rs, 4)]), VSUB(T1a, T15), ms, &(ii[0]));
Chris@42 322 T11 = VSUB(T7, Ti);
Chris@42 323 T14 = VSUB(T12, T13);
Chris@42 324 ST(&(ri[WS(rs, 6)]), VSUB(T11, T14), ms, &(ri[0]));
Chris@42 325 ST(&(ri[WS(rs, 2)]), VADD(T11, T14), ms, &(ri[0]));
Chris@42 326 }
Chris@42 327 T1b = VSUB(TF, Tu);
Chris@42 328 T1c = VSUB(T19, T16);
Chris@42 329 ST(&(ii[WS(rs, 2)]), VADD(T1b, T1c), ms, &(ii[0]));
Chris@42 330 ST(&(ii[WS(rs, 6)]), VSUB(T1c, T1b), ms, &(ii[0]));
Chris@42 331 {
Chris@42 332 V TX, T1g, T10, T1d, TY, TZ;
Chris@42 333 TX = VSUB(TH, TK);
Chris@42 334 T1g = VSUB(T1e, T1f);
Chris@42 335 TY = VSUB(TP, TM);
Chris@42 336 TZ = VADD(TR, TU);
Chris@42 337 T10 = VMUL(LDK(KP707106781), VSUB(TY, TZ));
Chris@42 338 T1d = VMUL(LDK(KP707106781), VADD(TY, TZ));
Chris@42 339 ST(&(ri[WS(rs, 7)]), VSUB(TX, T10), ms, &(ri[WS(rs, 1)]));
Chris@42 340 ST(&(ii[WS(rs, 5)]), VSUB(T1g, T1d), ms, &(ii[WS(rs, 1)]));
Chris@42 341 ST(&(ri[WS(rs, 3)]), VADD(TX, T10), ms, &(ri[WS(rs, 1)]));
Chris@42 342 ST(&(ii[WS(rs, 1)]), VADD(T1d, T1g), ms, &(ii[WS(rs, 1)]));
Chris@42 343 }
Chris@42 344 {
Chris@42 345 V TL, T1i, TW, T1h, TQ, TV;
Chris@42 346 TL = VADD(TH, TK);
Chris@42 347 T1i = VADD(T1f, T1e);
Chris@42 348 TQ = VADD(TM, TP);
Chris@42 349 TV = VSUB(TR, TU);
Chris@42 350 TW = VMUL(LDK(KP707106781), VADD(TQ, TV));
Chris@42 351 T1h = VMUL(LDK(KP707106781), VSUB(TV, TQ));
Chris@42 352 ST(&(ri[WS(rs, 5)]), VSUB(TL, TW), ms, &(ri[WS(rs, 1)]));
Chris@42 353 ST(&(ii[WS(rs, 7)]), VSUB(T1i, T1h), ms, &(ii[WS(rs, 1)]));
Chris@42 354 ST(&(ri[WS(rs, 1)]), VADD(TL, TW), ms, &(ri[WS(rs, 1)]));
Chris@42 355 ST(&(ii[WS(rs, 3)]), VADD(T1h, T1i), ms, &(ii[WS(rs, 1)]));
Chris@42 356 }
Chris@42 357 }
Chris@42 358 }
Chris@42 359 }
Chris@42 360 VLEAVE();
Chris@42 361 }
Chris@42 362
Chris@42 363 static const tw_instr twinstr[] = {
Chris@42 364 VTW(0, 1),
Chris@42 365 VTW(0, 2),
Chris@42 366 VTW(0, 3),
Chris@42 367 VTW(0, 4),
Chris@42 368 VTW(0, 5),
Chris@42 369 VTW(0, 6),
Chris@42 370 VTW(0, 7),
Chris@42 371 {TW_NEXT, (2 * VL), 0}
Chris@42 372 };
Chris@42 373
Chris@42 374 static const ct_desc desc = { 8, XSIMD_STRING("t1sv_8"), twinstr, &GENUS, {52, 18, 14, 0}, 0, 0, 0 };
Chris@42 375
Chris@42 376 void XSIMD(codelet_t1sv_8) (planner *p) {
Chris@42 377 X(kdft_dit_register) (p, t1sv_8, &desc);
Chris@42 378 }
Chris@42 379 #endif /* HAVE_FMA */