annotate src/fftw-3.3.5/dft/simd/common/t1fuv_6.c @ 84:08ae793730bd

Add null config files
author Chris Cannam
date Mon, 02 Mar 2020 14:03:47 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@42 22 /* Generated on Sat Jul 30 16:41:48 EDT 2016 */
Chris@42 23
Chris@42 24 #include "codelet-dft.h"
Chris@42 25
Chris@42 26 #ifdef HAVE_FMA
Chris@42 27
Chris@42 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name t1fuv_6 -include t1fu.h */
Chris@42 29
Chris@42 30 /*
Chris@42 31 * This function contains 23 FP additions, 18 FP multiplications,
Chris@42 32 * (or, 17 additions, 12 multiplications, 6 fused multiply/add),
Chris@42 33 * 27 stack variables, 2 constants, and 12 memory accesses
Chris@42 34 */
Chris@42 35 #include "t1fu.h"
Chris@42 36
Chris@42 37 static void t1fuv_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 38 {
Chris@42 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@42 40 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@42 41 {
Chris@42 42 INT m;
Chris@42 43 R *x;
Chris@42 44 x = ri;
Chris@42 45 for (m = mb, W = W + (mb * ((TWVL / VL) * 10)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(6, rs)) {
Chris@42 46 V T1, T2, Ta, Tc, T5, T7;
Chris@42 47 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@42 48 T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@42 49 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@42 50 Tc = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@42 51 T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@42 52 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@42 53 {
Chris@42 54 V T3, Tb, Td, T6, T8;
Chris@42 55 T3 = BYTWJ(&(W[TWVL * 4]), T2);
Chris@42 56 Tb = BYTWJ(&(W[TWVL * 6]), Ta);
Chris@42 57 Td = BYTWJ(&(W[0]), Tc);
Chris@42 58 T6 = BYTWJ(&(W[TWVL * 2]), T5);
Chris@42 59 T8 = BYTWJ(&(W[TWVL * 8]), T7);
Chris@42 60 {
Chris@42 61 V Ti, T4, Tk, Te, Tj, T9;
Chris@42 62 Ti = VADD(T1, T3);
Chris@42 63 T4 = VSUB(T1, T3);
Chris@42 64 Tk = VADD(Tb, Td);
Chris@42 65 Te = VSUB(Tb, Td);
Chris@42 66 Tj = VADD(T6, T8);
Chris@42 67 T9 = VSUB(T6, T8);
Chris@42 68 {
Chris@42 69 V Tl, Tn, Tf, Th, Tm, Tg;
Chris@42 70 Tl = VADD(Tj, Tk);
Chris@42 71 Tn = VMUL(LDK(KP866025403), VSUB(Tk, Tj));
Chris@42 72 Tf = VADD(T9, Te);
Chris@42 73 Th = VMUL(LDK(KP866025403), VSUB(Te, T9));
Chris@42 74 ST(&(x[0]), VADD(Ti, Tl), ms, &(x[0]));
Chris@42 75 Tm = VFNMS(LDK(KP500000000), Tl, Ti);
Chris@42 76 ST(&(x[WS(rs, 3)]), VADD(T4, Tf), ms, &(x[WS(rs, 1)]));
Chris@42 77 Tg = VFNMS(LDK(KP500000000), Tf, T4);
Chris@42 78 ST(&(x[WS(rs, 2)]), VFNMSI(Tn, Tm), ms, &(x[0]));
Chris@42 79 ST(&(x[WS(rs, 4)]), VFMAI(Tn, Tm), ms, &(x[0]));
Chris@42 80 ST(&(x[WS(rs, 5)]), VFNMSI(Th, Tg), ms, &(x[WS(rs, 1)]));
Chris@42 81 ST(&(x[WS(rs, 1)]), VFMAI(Th, Tg), ms, &(x[WS(rs, 1)]));
Chris@42 82 }
Chris@42 83 }
Chris@42 84 }
Chris@42 85 }
Chris@42 86 }
Chris@42 87 VLEAVE();
Chris@42 88 }
Chris@42 89
Chris@42 90 static const tw_instr twinstr[] = {
Chris@42 91 VTW(0, 1),
Chris@42 92 VTW(0, 2),
Chris@42 93 VTW(0, 3),
Chris@42 94 VTW(0, 4),
Chris@42 95 VTW(0, 5),
Chris@42 96 {TW_NEXT, VL, 0}
Chris@42 97 };
Chris@42 98
Chris@42 99 static const ct_desc desc = { 6, XSIMD_STRING("t1fuv_6"), twinstr, &GENUS, {17, 12, 6, 0}, 0, 0, 0 };
Chris@42 100
Chris@42 101 void XSIMD(codelet_t1fuv_6) (planner *p) {
Chris@42 102 X(kdft_dit_register) (p, t1fuv_6, &desc);
Chris@42 103 }
Chris@42 104 #else /* HAVE_FMA */
Chris@42 105
Chris@42 106 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name t1fuv_6 -include t1fu.h */
Chris@42 107
Chris@42 108 /*
Chris@42 109 * This function contains 23 FP additions, 14 FP multiplications,
Chris@42 110 * (or, 21 additions, 12 multiplications, 2 fused multiply/add),
Chris@42 111 * 19 stack variables, 2 constants, and 12 memory accesses
Chris@42 112 */
Chris@42 113 #include "t1fu.h"
Chris@42 114
Chris@42 115 static void t1fuv_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 116 {
Chris@42 117 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@42 118 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@42 119 {
Chris@42 120 INT m;
Chris@42 121 R *x;
Chris@42 122 x = ri;
Chris@42 123 for (m = mb, W = W + (mb * ((TWVL / VL) * 10)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(6, rs)) {
Chris@42 124 V T4, Ti, Te, Tk, T9, Tj, T1, T3, T2;
Chris@42 125 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@42 126 T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@42 127 T3 = BYTWJ(&(W[TWVL * 4]), T2);
Chris@42 128 T4 = VSUB(T1, T3);
Chris@42 129 Ti = VADD(T1, T3);
Chris@42 130 {
Chris@42 131 V Tb, Td, Ta, Tc;
Chris@42 132 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@42 133 Tb = BYTWJ(&(W[TWVL * 6]), Ta);
Chris@42 134 Tc = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@42 135 Td = BYTWJ(&(W[0]), Tc);
Chris@42 136 Te = VSUB(Tb, Td);
Chris@42 137 Tk = VADD(Tb, Td);
Chris@42 138 }
Chris@42 139 {
Chris@42 140 V T6, T8, T5, T7;
Chris@42 141 T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@42 142 T6 = BYTWJ(&(W[TWVL * 2]), T5);
Chris@42 143 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@42 144 T8 = BYTWJ(&(W[TWVL * 8]), T7);
Chris@42 145 T9 = VSUB(T6, T8);
Chris@42 146 Tj = VADD(T6, T8);
Chris@42 147 }
Chris@42 148 {
Chris@42 149 V Th, Tf, Tg, Tn, Tl, Tm;
Chris@42 150 Th = VBYI(VMUL(LDK(KP866025403), VSUB(Te, T9)));
Chris@42 151 Tf = VADD(T9, Te);
Chris@42 152 Tg = VFNMS(LDK(KP500000000), Tf, T4);
Chris@42 153 ST(&(x[WS(rs, 3)]), VADD(T4, Tf), ms, &(x[WS(rs, 1)]));
Chris@42 154 ST(&(x[WS(rs, 1)]), VADD(Tg, Th), ms, &(x[WS(rs, 1)]));
Chris@42 155 ST(&(x[WS(rs, 5)]), VSUB(Tg, Th), ms, &(x[WS(rs, 1)]));
Chris@42 156 Tn = VBYI(VMUL(LDK(KP866025403), VSUB(Tk, Tj)));
Chris@42 157 Tl = VADD(Tj, Tk);
Chris@42 158 Tm = VFNMS(LDK(KP500000000), Tl, Ti);
Chris@42 159 ST(&(x[0]), VADD(Ti, Tl), ms, &(x[0]));
Chris@42 160 ST(&(x[WS(rs, 4)]), VADD(Tm, Tn), ms, &(x[0]));
Chris@42 161 ST(&(x[WS(rs, 2)]), VSUB(Tm, Tn), ms, &(x[0]));
Chris@42 162 }
Chris@42 163 }
Chris@42 164 }
Chris@42 165 VLEAVE();
Chris@42 166 }
Chris@42 167
Chris@42 168 static const tw_instr twinstr[] = {
Chris@42 169 VTW(0, 1),
Chris@42 170 VTW(0, 2),
Chris@42 171 VTW(0, 3),
Chris@42 172 VTW(0, 4),
Chris@42 173 VTW(0, 5),
Chris@42 174 {TW_NEXT, VL, 0}
Chris@42 175 };
Chris@42 176
Chris@42 177 static const ct_desc desc = { 6, XSIMD_STRING("t1fuv_6"), twinstr, &GENUS, {21, 12, 2, 0}, 0, 0, 0 };
Chris@42 178
Chris@42 179 void XSIMD(codelet_t1fuv_6) (planner *p) {
Chris@42 180 X(kdft_dit_register) (p, t1fuv_6, &desc);
Chris@42 181 }
Chris@42 182 #endif /* HAVE_FMA */