annotate src/fftw-3.3.5/dft/simd/common/t1bv_5.c @ 84:08ae793730bd

Add null config files
author Chris Cannam
date Mon, 02 Mar 2020 14:03:47 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@42 22 /* Generated on Sat Jul 30 16:44:14 EDT 2016 */
Chris@42 23
Chris@42 24 #include "codelet-dft.h"
Chris@42 25
Chris@42 26 #ifdef HAVE_FMA
Chris@42 27
Chris@42 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 5 -name t1bv_5 -include t1b.h -sign 1 */
Chris@42 29
Chris@42 30 /*
Chris@42 31 * This function contains 20 FP additions, 19 FP multiplications,
Chris@42 32 * (or, 11 additions, 10 multiplications, 9 fused multiply/add),
Chris@42 33 * 26 stack variables, 4 constants, and 10 memory accesses
Chris@42 34 */
Chris@42 35 #include "t1b.h"
Chris@42 36
Chris@42 37 static void t1bv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 38 {
Chris@42 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@42 40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@42 41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@42 42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@42 43 {
Chris@42 44 INT m;
Chris@42 45 R *x;
Chris@42 46 x = ii;
Chris@42 47 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(5, rs)) {
Chris@42 48 V T1, T2, T9, T4, T7;
Chris@42 49 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@42 50 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@42 51 T9 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@42 52 T4 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@42 53 T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@42 54 {
Chris@42 55 V T3, Ta, T5, T8;
Chris@42 56 T3 = BYTW(&(W[0]), T2);
Chris@42 57 Ta = BYTW(&(W[TWVL * 4]), T9);
Chris@42 58 T5 = BYTW(&(W[TWVL * 6]), T4);
Chris@42 59 T8 = BYTW(&(W[TWVL * 2]), T7);
Chris@42 60 {
Chris@42 61 V T6, Tg, Tb, Th;
Chris@42 62 T6 = VADD(T3, T5);
Chris@42 63 Tg = VSUB(T3, T5);
Chris@42 64 Tb = VADD(T8, Ta);
Chris@42 65 Th = VSUB(T8, Ta);
Chris@42 66 {
Chris@42 67 V Te, Tc, Tk, Ti, Td, Tj, Tf;
Chris@42 68 Te = VSUB(T6, Tb);
Chris@42 69 Tc = VADD(T6, Tb);
Chris@42 70 Tk = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tg, Th));
Chris@42 71 Ti = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Th, Tg));
Chris@42 72 Td = VFNMS(LDK(KP250000000), Tc, T1);
Chris@42 73 ST(&(x[0]), VADD(T1, Tc), ms, &(x[0]));
Chris@42 74 Tj = VFNMS(LDK(KP559016994), Te, Td);
Chris@42 75 Tf = VFMA(LDK(KP559016994), Te, Td);
Chris@42 76 ST(&(x[WS(rs, 2)]), VFNMSI(Tk, Tj), ms, &(x[0]));
Chris@42 77 ST(&(x[WS(rs, 3)]), VFMAI(Tk, Tj), ms, &(x[WS(rs, 1)]));
Chris@42 78 ST(&(x[WS(rs, 4)]), VFNMSI(Ti, Tf), ms, &(x[0]));
Chris@42 79 ST(&(x[WS(rs, 1)]), VFMAI(Ti, Tf), ms, &(x[WS(rs, 1)]));
Chris@42 80 }
Chris@42 81 }
Chris@42 82 }
Chris@42 83 }
Chris@42 84 }
Chris@42 85 VLEAVE();
Chris@42 86 }
Chris@42 87
Chris@42 88 static const tw_instr twinstr[] = {
Chris@42 89 VTW(0, 1),
Chris@42 90 VTW(0, 2),
Chris@42 91 VTW(0, 3),
Chris@42 92 VTW(0, 4),
Chris@42 93 {TW_NEXT, VL, 0}
Chris@42 94 };
Chris@42 95
Chris@42 96 static const ct_desc desc = { 5, XSIMD_STRING("t1bv_5"), twinstr, &GENUS, {11, 10, 9, 0}, 0, 0, 0 };
Chris@42 97
Chris@42 98 void XSIMD(codelet_t1bv_5) (planner *p) {
Chris@42 99 X(kdft_dit_register) (p, t1bv_5, &desc);
Chris@42 100 }
Chris@42 101 #else /* HAVE_FMA */
Chris@42 102
Chris@42 103 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 5 -name t1bv_5 -include t1b.h -sign 1 */
Chris@42 104
Chris@42 105 /*
Chris@42 106 * This function contains 20 FP additions, 14 FP multiplications,
Chris@42 107 * (or, 17 additions, 11 multiplications, 3 fused multiply/add),
Chris@42 108 * 20 stack variables, 4 constants, and 10 memory accesses
Chris@42 109 */
Chris@42 110 #include "t1b.h"
Chris@42 111
Chris@42 112 static void t1bv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 113 {
Chris@42 114 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@42 115 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@42 116 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@42 117 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@42 118 {
Chris@42 119 INT m;
Chris@42 120 R *x;
Chris@42 121 x = ii;
Chris@42 122 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(5, rs)) {
Chris@42 123 V Tf, T5, Ta, Tc, Td, Tg;
Chris@42 124 Tf = LD(&(x[0]), ms, &(x[0]));
Chris@42 125 {
Chris@42 126 V T2, T9, T4, T7;
Chris@42 127 {
Chris@42 128 V T1, T8, T3, T6;
Chris@42 129 T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@42 130 T2 = BYTW(&(W[0]), T1);
Chris@42 131 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@42 132 T9 = BYTW(&(W[TWVL * 4]), T8);
Chris@42 133 T3 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@42 134 T4 = BYTW(&(W[TWVL * 6]), T3);
Chris@42 135 T6 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@42 136 T7 = BYTW(&(W[TWVL * 2]), T6);
Chris@42 137 }
Chris@42 138 T5 = VSUB(T2, T4);
Chris@42 139 Ta = VSUB(T7, T9);
Chris@42 140 Tc = VADD(T2, T4);
Chris@42 141 Td = VADD(T7, T9);
Chris@42 142 Tg = VADD(Tc, Td);
Chris@42 143 }
Chris@42 144 ST(&(x[0]), VADD(Tf, Tg), ms, &(x[0]));
Chris@42 145 {
Chris@42 146 V Tb, Tj, Ti, Tk, Te, Th;
Chris@42 147 Tb = VBYI(VFMA(LDK(KP951056516), T5, VMUL(LDK(KP587785252), Ta)));
Chris@42 148 Tj = VBYI(VFNMS(LDK(KP951056516), Ta, VMUL(LDK(KP587785252), T5)));
Chris@42 149 Te = VMUL(LDK(KP559016994), VSUB(Tc, Td));
Chris@42 150 Th = VFNMS(LDK(KP250000000), Tg, Tf);
Chris@42 151 Ti = VADD(Te, Th);
Chris@42 152 Tk = VSUB(Th, Te);
Chris@42 153 ST(&(x[WS(rs, 1)]), VADD(Tb, Ti), ms, &(x[WS(rs, 1)]));
Chris@42 154 ST(&(x[WS(rs, 3)]), VSUB(Tk, Tj), ms, &(x[WS(rs, 1)]));
Chris@42 155 ST(&(x[WS(rs, 4)]), VSUB(Ti, Tb), ms, &(x[0]));
Chris@42 156 ST(&(x[WS(rs, 2)]), VADD(Tj, Tk), ms, &(x[0]));
Chris@42 157 }
Chris@42 158 }
Chris@42 159 }
Chris@42 160 VLEAVE();
Chris@42 161 }
Chris@42 162
Chris@42 163 static const tw_instr twinstr[] = {
Chris@42 164 VTW(0, 1),
Chris@42 165 VTW(0, 2),
Chris@42 166 VTW(0, 3),
Chris@42 167 VTW(0, 4),
Chris@42 168 {TW_NEXT, VL, 0}
Chris@42 169 };
Chris@42 170
Chris@42 171 static const ct_desc desc = { 5, XSIMD_STRING("t1bv_5"), twinstr, &GENUS, {17, 11, 3, 0}, 0, 0, 0 };
Chris@42 172
Chris@42 173 void XSIMD(codelet_t1bv_5) (planner *p) {
Chris@42 174 X(kdft_dit_register) (p, t1bv_5, &desc);
Chris@42 175 }
Chris@42 176 #endif /* HAVE_FMA */