annotate src/fftw-3.3.5/dft/simd/common/n1fv_8.c @ 84:08ae793730bd

Add null config files
author Chris Cannam
date Mon, 02 Mar 2020 14:03:47 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@42 22 /* Generated on Sat Jul 30 16:38:39 EDT 2016 */
Chris@42 23
Chris@42 24 #include "codelet-dft.h"
Chris@42 25
Chris@42 26 #ifdef HAVE_FMA
Chris@42 27
Chris@42 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name n1fv_8 -include n1f.h */
Chris@42 29
Chris@42 30 /*
Chris@42 31 * This function contains 26 FP additions, 10 FP multiplications,
Chris@42 32 * (or, 16 additions, 0 multiplications, 10 fused multiply/add),
Chris@42 33 * 30 stack variables, 1 constants, and 16 memory accesses
Chris@42 34 */
Chris@42 35 #include "n1f.h"
Chris@42 36
Chris@42 37 static void n1fv_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@42 38 {
Chris@42 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@42 40 {
Chris@42 41 INT i;
Chris@42 42 const R *xi;
Chris@42 43 R *xo;
Chris@42 44 xi = ri;
Chris@42 45 xo = ro;
Chris@42 46 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) {
Chris@42 47 V T1, T2, Tc, Td, T4, T5, T7, T8;
Chris@42 48 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@42 49 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@42 50 Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@42 51 Td = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@42 52 T4 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@42 53 T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@42 54 T7 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@42 55 T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@42 56 {
Chris@42 57 V T3, Tj, Te, Tk, T6, Tm, T9, Tn, Tp, Tl;
Chris@42 58 T3 = VSUB(T1, T2);
Chris@42 59 Tj = VADD(T1, T2);
Chris@42 60 Te = VSUB(Tc, Td);
Chris@42 61 Tk = VADD(Tc, Td);
Chris@42 62 T6 = VSUB(T4, T5);
Chris@42 63 Tm = VADD(T4, T5);
Chris@42 64 T9 = VSUB(T7, T8);
Chris@42 65 Tn = VADD(T7, T8);
Chris@42 66 Tp = VSUB(Tj, Tk);
Chris@42 67 Tl = VADD(Tj, Tk);
Chris@42 68 {
Chris@42 69 V Tq, To, Ta, Tf;
Chris@42 70 Tq = VSUB(Tn, Tm);
Chris@42 71 To = VADD(Tm, Tn);
Chris@42 72 Ta = VADD(T6, T9);
Chris@42 73 Tf = VSUB(T9, T6);
Chris@42 74 {
Chris@42 75 V Tg, Ti, Tb, Th;
Chris@42 76 ST(&(xo[0]), VADD(Tl, To), ovs, &(xo[0]));
Chris@42 77 ST(&(xo[WS(os, 4)]), VSUB(Tl, To), ovs, &(xo[0]));
Chris@42 78 ST(&(xo[WS(os, 2)]), VFMAI(Tq, Tp), ovs, &(xo[0]));
Chris@42 79 ST(&(xo[WS(os, 6)]), VFNMSI(Tq, Tp), ovs, &(xo[0]));
Chris@42 80 Tg = VFNMS(LDK(KP707106781), Tf, Te);
Chris@42 81 Ti = VFMA(LDK(KP707106781), Tf, Te);
Chris@42 82 Tb = VFMA(LDK(KP707106781), Ta, T3);
Chris@42 83 Th = VFNMS(LDK(KP707106781), Ta, T3);
Chris@42 84 ST(&(xo[WS(os, 3)]), VFMAI(Ti, Th), ovs, &(xo[WS(os, 1)]));
Chris@42 85 ST(&(xo[WS(os, 5)]), VFNMSI(Ti, Th), ovs, &(xo[WS(os, 1)]));
Chris@42 86 ST(&(xo[WS(os, 7)]), VFMAI(Tg, Tb), ovs, &(xo[WS(os, 1)]));
Chris@42 87 ST(&(xo[WS(os, 1)]), VFNMSI(Tg, Tb), ovs, &(xo[WS(os, 1)]));
Chris@42 88 }
Chris@42 89 }
Chris@42 90 }
Chris@42 91 }
Chris@42 92 }
Chris@42 93 VLEAVE();
Chris@42 94 }
Chris@42 95
Chris@42 96 static const kdft_desc desc = { 8, XSIMD_STRING("n1fv_8"), {16, 0, 10, 0}, &GENUS, 0, 0, 0, 0 };
Chris@42 97
Chris@42 98 void XSIMD(codelet_n1fv_8) (planner *p) {
Chris@42 99 X(kdft_register) (p, n1fv_8, &desc);
Chris@42 100 }
Chris@42 101
Chris@42 102 #else /* HAVE_FMA */
Chris@42 103
Chris@42 104 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name n1fv_8 -include n1f.h */
Chris@42 105
Chris@42 106 /*
Chris@42 107 * This function contains 26 FP additions, 2 FP multiplications,
Chris@42 108 * (or, 26 additions, 2 multiplications, 0 fused multiply/add),
Chris@42 109 * 22 stack variables, 1 constants, and 16 memory accesses
Chris@42 110 */
Chris@42 111 #include "n1f.h"
Chris@42 112
Chris@42 113 static void n1fv_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@42 114 {
Chris@42 115 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@42 116 {
Chris@42 117 INT i;
Chris@42 118 const R *xi;
Chris@42 119 R *xo;
Chris@42 120 xi = ri;
Chris@42 121 xo = ro;
Chris@42 122 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) {
Chris@42 123 V T3, Tj, Tf, Tk, Ta, Tn, Tc, Tm;
Chris@42 124 {
Chris@42 125 V T1, T2, Td, Te;
Chris@42 126 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@42 127 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@42 128 T3 = VSUB(T1, T2);
Chris@42 129 Tj = VADD(T1, T2);
Chris@42 130 Td = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@42 131 Te = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@42 132 Tf = VSUB(Td, Te);
Chris@42 133 Tk = VADD(Td, Te);
Chris@42 134 {
Chris@42 135 V T4, T5, T6, T7, T8, T9;
Chris@42 136 T4 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@42 137 T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@42 138 T6 = VSUB(T4, T5);
Chris@42 139 T7 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@42 140 T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@42 141 T9 = VSUB(T7, T8);
Chris@42 142 Ta = VMUL(LDK(KP707106781), VADD(T6, T9));
Chris@42 143 Tn = VADD(T7, T8);
Chris@42 144 Tc = VMUL(LDK(KP707106781), VSUB(T9, T6));
Chris@42 145 Tm = VADD(T4, T5);
Chris@42 146 }
Chris@42 147 }
Chris@42 148 {
Chris@42 149 V Tb, Tg, Tp, Tq;
Chris@42 150 Tb = VADD(T3, Ta);
Chris@42 151 Tg = VBYI(VSUB(Tc, Tf));
Chris@42 152 ST(&(xo[WS(os, 7)]), VSUB(Tb, Tg), ovs, &(xo[WS(os, 1)]));
Chris@42 153 ST(&(xo[WS(os, 1)]), VADD(Tb, Tg), ovs, &(xo[WS(os, 1)]));
Chris@42 154 Tp = VSUB(Tj, Tk);
Chris@42 155 Tq = VBYI(VSUB(Tn, Tm));
Chris@42 156 ST(&(xo[WS(os, 6)]), VSUB(Tp, Tq), ovs, &(xo[0]));
Chris@42 157 ST(&(xo[WS(os, 2)]), VADD(Tp, Tq), ovs, &(xo[0]));
Chris@42 158 }
Chris@42 159 {
Chris@42 160 V Th, Ti, Tl, To;
Chris@42 161 Th = VSUB(T3, Ta);
Chris@42 162 Ti = VBYI(VADD(Tf, Tc));
Chris@42 163 ST(&(xo[WS(os, 5)]), VSUB(Th, Ti), ovs, &(xo[WS(os, 1)]));
Chris@42 164 ST(&(xo[WS(os, 3)]), VADD(Th, Ti), ovs, &(xo[WS(os, 1)]));
Chris@42 165 Tl = VADD(Tj, Tk);
Chris@42 166 To = VADD(Tm, Tn);
Chris@42 167 ST(&(xo[WS(os, 4)]), VSUB(Tl, To), ovs, &(xo[0]));
Chris@42 168 ST(&(xo[0]), VADD(Tl, To), ovs, &(xo[0]));
Chris@42 169 }
Chris@42 170 }
Chris@42 171 }
Chris@42 172 VLEAVE();
Chris@42 173 }
Chris@42 174
Chris@42 175 static const kdft_desc desc = { 8, XSIMD_STRING("n1fv_8"), {26, 2, 0, 0}, &GENUS, 0, 0, 0, 0 };
Chris@42 176
Chris@42 177 void XSIMD(codelet_n1fv_8) (planner *p) {
Chris@42 178 X(kdft_register) (p, n1fv_8, &desc);
Chris@42 179 }
Chris@42 180
Chris@42 181 #endif /* HAVE_FMA */