annotate src/fftw-3.3.5/dft/simd/common/n1fv_12.c @ 84:08ae793730bd

Add null config files
author Chris Cannam
date Mon, 02 Mar 2020 14:03:47 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@42 22 /* Generated on Sat Jul 30 16:38:40 EDT 2016 */
Chris@42 23
Chris@42 24 #include "codelet-dft.h"
Chris@42 25
Chris@42 26 #ifdef HAVE_FMA
Chris@42 27
Chris@42 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n1fv_12 -include n1f.h */
Chris@42 29
Chris@42 30 /*
Chris@42 31 * This function contains 48 FP additions, 20 FP multiplications,
Chris@42 32 * (or, 30 additions, 2 multiplications, 18 fused multiply/add),
Chris@42 33 * 49 stack variables, 2 constants, and 24 memory accesses
Chris@42 34 */
Chris@42 35 #include "n1f.h"
Chris@42 36
Chris@42 37 static void n1fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@42 38 {
Chris@42 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@42 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@42 41 {
Chris@42 42 INT i;
Chris@42 43 const R *xi;
Chris@42 44 R *xo;
Chris@42 45 xi = ri;
Chris@42 46 xo = ro;
Chris@42 47 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
Chris@42 48 V T1, T6, Tk, Tn, Tc, Td, Tf, Tr, T4, Ts, T9, Tg, Te, Tl;
Chris@42 49 {
Chris@42 50 V T2, T3, T7, T8;
Chris@42 51 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@42 52 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@42 53 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@42 54 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@42 55 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Chris@42 56 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@42 57 Tk = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@42 58 Tn = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@42 59 Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Chris@42 60 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@42 61 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@42 62 Tr = VSUB(T3, T2);
Chris@42 63 T4 = VADD(T2, T3);
Chris@42 64 Ts = VSUB(T8, T7);
Chris@42 65 T9 = VADD(T7, T8);
Chris@42 66 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@42 67 }
Chris@42 68 Te = VSUB(Tc, Td);
Chris@42 69 Tl = VADD(Td, Tc);
Chris@42 70 {
Chris@42 71 V T5, TF, TB, Tt, Ta, TG, Th, To, Tm, TI;
Chris@42 72 T5 = VFNMS(LDK(KP500000000), T4, T1);
Chris@42 73 TF = VADD(T1, T4);
Chris@42 74 TB = VADD(Tr, Ts);
Chris@42 75 Tt = VSUB(Tr, Ts);
Chris@42 76 Ta = VFNMS(LDK(KP500000000), T9, T6);
Chris@42 77 TG = VADD(T6, T9);
Chris@42 78 Th = VSUB(Tf, Tg);
Chris@42 79 To = VADD(Tf, Tg);
Chris@42 80 Tm = VFNMS(LDK(KP500000000), Tl, Tk);
Chris@42 81 TI = VADD(Tk, Tl);
Chris@42 82 {
Chris@42 83 V TH, TL, Tb, Tx, TJ, Tp, Ti, TA;
Chris@42 84 TH = VSUB(TF, TG);
Chris@42 85 TL = VADD(TF, TG);
Chris@42 86 Tb = VSUB(T5, Ta);
Chris@42 87 Tx = VADD(T5, Ta);
Chris@42 88 TJ = VADD(Tn, To);
Chris@42 89 Tp = VFNMS(LDK(KP500000000), To, Tn);
Chris@42 90 Ti = VADD(Te, Th);
Chris@42 91 TA = VSUB(Te, Th);
Chris@42 92 {
Chris@42 93 V Tq, Ty, TK, TM;
Chris@42 94 Tq = VSUB(Tm, Tp);
Chris@42 95 Ty = VADD(Tm, Tp);
Chris@42 96 TK = VSUB(TI, TJ);
Chris@42 97 TM = VADD(TI, TJ);
Chris@42 98 {
Chris@42 99 V TC, TE, Tj, Tv;
Chris@42 100 TC = VMUL(LDK(KP866025403), VSUB(TA, TB));
Chris@42 101 TE = VMUL(LDK(KP866025403), VADD(TB, TA));
Chris@42 102 Tj = VFMA(LDK(KP866025403), Ti, Tb);
Chris@42 103 Tv = VFNMS(LDK(KP866025403), Ti, Tb);
Chris@42 104 {
Chris@42 105 V Tz, TD, Tu, Tw;
Chris@42 106 Tz = VSUB(Tx, Ty);
Chris@42 107 TD = VADD(Tx, Ty);
Chris@42 108 Tu = VFNMS(LDK(KP866025403), Tt, Tq);
Chris@42 109 Tw = VFMA(LDK(KP866025403), Tt, Tq);
Chris@42 110 ST(&(xo[0]), VADD(TL, TM), ovs, &(xo[0]));
Chris@42 111 ST(&(xo[WS(os, 6)]), VSUB(TL, TM), ovs, &(xo[0]));
Chris@42 112 ST(&(xo[WS(os, 3)]), VFMAI(TK, TH), ovs, &(xo[WS(os, 1)]));
Chris@42 113 ST(&(xo[WS(os, 9)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)]));
Chris@42 114 ST(&(xo[WS(os, 4)]), VFMAI(TE, TD), ovs, &(xo[0]));
Chris@42 115 ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0]));
Chris@42 116 ST(&(xo[WS(os, 10)]), VFNMSI(TC, Tz), ovs, &(xo[0]));
Chris@42 117 ST(&(xo[WS(os, 2)]), VFMAI(TC, Tz), ovs, &(xo[0]));
Chris@42 118 ST(&(xo[WS(os, 5)]), VFNMSI(Tw, Tv), ovs, &(xo[WS(os, 1)]));
Chris@42 119 ST(&(xo[WS(os, 7)]), VFMAI(Tw, Tv), ovs, &(xo[WS(os, 1)]));
Chris@42 120 ST(&(xo[WS(os, 11)]), VFMAI(Tu, Tj), ovs, &(xo[WS(os, 1)]));
Chris@42 121 ST(&(xo[WS(os, 1)]), VFNMSI(Tu, Tj), ovs, &(xo[WS(os, 1)]));
Chris@42 122 }
Chris@42 123 }
Chris@42 124 }
Chris@42 125 }
Chris@42 126 }
Chris@42 127 }
Chris@42 128 }
Chris@42 129 VLEAVE();
Chris@42 130 }
Chris@42 131
Chris@42 132 static const kdft_desc desc = { 12, XSIMD_STRING("n1fv_12"), {30, 2, 18, 0}, &GENUS, 0, 0, 0, 0 };
Chris@42 133
Chris@42 134 void XSIMD(codelet_n1fv_12) (planner *p) {
Chris@42 135 X(kdft_register) (p, n1fv_12, &desc);
Chris@42 136 }
Chris@42 137
Chris@42 138 #else /* HAVE_FMA */
Chris@42 139
Chris@42 140 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n1fv_12 -include n1f.h */
Chris@42 141
Chris@42 142 /*
Chris@42 143 * This function contains 48 FP additions, 8 FP multiplications,
Chris@42 144 * (or, 44 additions, 4 multiplications, 4 fused multiply/add),
Chris@42 145 * 27 stack variables, 2 constants, and 24 memory accesses
Chris@42 146 */
Chris@42 147 #include "n1f.h"
Chris@42 148
Chris@42 149 static void n1fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@42 150 {
Chris@42 151 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@42 152 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@42 153 {
Chris@42 154 INT i;
Chris@42 155 const R *xi;
Chris@42 156 R *xo;
Chris@42 157 xi = ri;
Chris@42 158 xo = ro;
Chris@42 159 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
Chris@42 160 V T5, Ta, TJ, Ty, Tq, Tp, Tg, Tl, TI, TA, Tz, Tu;
Chris@42 161 {
Chris@42 162 V T1, T6, T4, Tw, T9, Tx;
Chris@42 163 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@42 164 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@42 165 {
Chris@42 166 V T2, T3, T7, T8;
Chris@42 167 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@42 168 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@42 169 T4 = VADD(T2, T3);
Chris@42 170 Tw = VSUB(T3, T2);
Chris@42 171 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Chris@42 172 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@42 173 T9 = VADD(T7, T8);
Chris@42 174 Tx = VSUB(T8, T7);
Chris@42 175 }
Chris@42 176 T5 = VADD(T1, T4);
Chris@42 177 Ta = VADD(T6, T9);
Chris@42 178 TJ = VADD(Tw, Tx);
Chris@42 179 Ty = VMUL(LDK(KP866025403), VSUB(Tw, Tx));
Chris@42 180 Tq = VFNMS(LDK(KP500000000), T9, T6);
Chris@42 181 Tp = VFNMS(LDK(KP500000000), T4, T1);
Chris@42 182 }
Chris@42 183 {
Chris@42 184 V Tc, Th, Tf, Ts, Tk, Tt;
Chris@42 185 Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@42 186 Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@42 187 {
Chris@42 188 V Td, Te, Ti, Tj;
Chris@42 189 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@42 190 Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Chris@42 191 Tf = VADD(Td, Te);
Chris@42 192 Ts = VSUB(Te, Td);
Chris@42 193 Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@42 194 Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@42 195 Tk = VADD(Ti, Tj);
Chris@42 196 Tt = VSUB(Tj, Ti);
Chris@42 197 }
Chris@42 198 Tg = VADD(Tc, Tf);
Chris@42 199 Tl = VADD(Th, Tk);
Chris@42 200 TI = VADD(Ts, Tt);
Chris@42 201 TA = VFNMS(LDK(KP500000000), Tk, Th);
Chris@42 202 Tz = VFNMS(LDK(KP500000000), Tf, Tc);
Chris@42 203 Tu = VMUL(LDK(KP866025403), VSUB(Ts, Tt));
Chris@42 204 }
Chris@42 205 {
Chris@42 206 V Tb, Tm, Tn, To;
Chris@42 207 Tb = VSUB(T5, Ta);
Chris@42 208 Tm = VBYI(VSUB(Tg, Tl));
Chris@42 209 ST(&(xo[WS(os, 9)]), VSUB(Tb, Tm), ovs, &(xo[WS(os, 1)]));
Chris@42 210 ST(&(xo[WS(os, 3)]), VADD(Tb, Tm), ovs, &(xo[WS(os, 1)]));
Chris@42 211 Tn = VADD(T5, Ta);
Chris@42 212 To = VADD(Tg, Tl);
Chris@42 213 ST(&(xo[WS(os, 6)]), VSUB(Tn, To), ovs, &(xo[0]));
Chris@42 214 ST(&(xo[0]), VADD(Tn, To), ovs, &(xo[0]));
Chris@42 215 }
Chris@42 216 {
Chris@42 217 V Tv, TE, TC, TD, Tr, TB;
Chris@42 218 Tr = VSUB(Tp, Tq);
Chris@42 219 Tv = VSUB(Tr, Tu);
Chris@42 220 TE = VADD(Tr, Tu);
Chris@42 221 TB = VSUB(Tz, TA);
Chris@42 222 TC = VBYI(VADD(Ty, TB));
Chris@42 223 TD = VBYI(VSUB(Ty, TB));
Chris@42 224 ST(&(xo[WS(os, 5)]), VSUB(Tv, TC), ovs, &(xo[WS(os, 1)]));
Chris@42 225 ST(&(xo[WS(os, 11)]), VSUB(TE, TD), ovs, &(xo[WS(os, 1)]));
Chris@42 226 ST(&(xo[WS(os, 7)]), VADD(TC, Tv), ovs, &(xo[WS(os, 1)]));
Chris@42 227 ST(&(xo[WS(os, 1)]), VADD(TD, TE), ovs, &(xo[WS(os, 1)]));
Chris@42 228 }
Chris@42 229 {
Chris@42 230 V TK, TM, TH, TL, TF, TG;
Chris@42 231 TK = VBYI(VMUL(LDK(KP866025403), VSUB(TI, TJ)));
Chris@42 232 TM = VBYI(VMUL(LDK(KP866025403), VADD(TJ, TI)));
Chris@42 233 TF = VADD(Tp, Tq);
Chris@42 234 TG = VADD(Tz, TA);
Chris@42 235 TH = VSUB(TF, TG);
Chris@42 236 TL = VADD(TF, TG);
Chris@42 237 ST(&(xo[WS(os, 10)]), VSUB(TH, TK), ovs, &(xo[0]));
Chris@42 238 ST(&(xo[WS(os, 4)]), VADD(TL, TM), ovs, &(xo[0]));
Chris@42 239 ST(&(xo[WS(os, 2)]), VADD(TH, TK), ovs, &(xo[0]));
Chris@42 240 ST(&(xo[WS(os, 8)]), VSUB(TL, TM), ovs, &(xo[0]));
Chris@42 241 }
Chris@42 242 }
Chris@42 243 }
Chris@42 244 VLEAVE();
Chris@42 245 }
Chris@42 246
Chris@42 247 static const kdft_desc desc = { 12, XSIMD_STRING("n1fv_12"), {44, 4, 4, 0}, &GENUS, 0, 0, 0, 0 };
Chris@42 248
Chris@42 249 void XSIMD(codelet_n1fv_12) (planner *p) {
Chris@42 250 X(kdft_register) (p, n1fv_12, &desc);
Chris@42 251 }
Chris@42 252
Chris@42 253 #endif /* HAVE_FMA */