Chris@0: /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ Chris@0: Chris@0: /* Chris@0: Sonic Visualiser Chris@0: An audio file viewer and annotation editor. Chris@0: Centre for Digital Music, Queen Mary, University of London. Chris@0: This file copyright 2006 Chris Cannam. Chris@0: Chris@0: This program is free software; you can redistribute it and/or Chris@0: modify it under the terms of the GNU General Public License as Chris@0: published by the Free Software Foundation; either version 2 of the Chris@0: License, or (at your option) any later version. See the file Chris@0: COPYING included with this distribution for more information. Chris@0: */ Chris@0: Chris@14: #include "PhaseVocoderTimeStretcher.h" Chris@0: Chris@0: #include Chris@0: #include Chris@0: Chris@14: //#define DEBUG_PHASE_VOCODER_TIME_STRETCHER 1 Chris@0: Chris@14: PhaseVocoderTimeStretcher::PhaseVocoderTimeStretcher(float ratio, Chris@0: size_t maxProcessInputBlockSize, Chris@0: size_t inputIncrement, Chris@0: size_t windowSize, Chris@0: WindowType windowType) : Chris@0: m_ratio(ratio), Chris@0: m_n1(inputIncrement), Chris@12: m_n2(lrintf(m_n1 * ratio)), Chris@0: m_wlen(std::max(windowSize, m_n2 * 2)), Chris@0: m_inbuf(m_wlen), Chris@12: m_outbuf(maxProcessInputBlockSize * ratio + 1024) //!!! Chris@0: { Chris@0: m_window = new Window(windowType, m_wlen), Chris@0: Chris@0: m_time = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * m_wlen); Chris@0: m_freq = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * m_wlen); Chris@0: m_dbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen); Chris@12: m_mashbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen); Chris@13: m_modulationbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen); Chris@12: m_prevPhase = (float *)fftwf_malloc(sizeof(float) * m_wlen); Chris@12: m_prevAdjustedPhase = (float *)fftwf_malloc(sizeof(float) * m_wlen); Chris@0: Chris@0: m_plan = fftwf_plan_dft_1d(m_wlen, m_time, m_freq, FFTW_FORWARD, FFTW_ESTIMATE); Chris@0: m_iplan = fftwf_plan_dft_c2r_1d(m_wlen, m_freq, m_dbuf, FFTW_ESTIMATE); Chris@0: Chris@0: for (int i = 0; i < m_wlen; ++i) { Chris@0: m_mashbuf[i] = 0.0; Chris@13: m_modulationbuf[i] = 0.0; Chris@12: m_prevPhase[i] = 0.0; Chris@12: m_prevAdjustedPhase[i] = 0.0; Chris@0: } Chris@0: } Chris@0: Chris@14: PhaseVocoderTimeStretcher::~PhaseVocoderTimeStretcher() Chris@0: { Chris@14: std::cerr << "PhaseVocoderTimeStretcher::~PhaseVocoderTimeStretcher" << std::endl; Chris@0: Chris@0: fftwf_destroy_plan(m_plan); Chris@0: fftwf_destroy_plan(m_iplan); Chris@0: Chris@0: fftwf_free(m_time); Chris@0: fftwf_free(m_freq); Chris@0: fftwf_free(m_dbuf); Chris@12: fftwf_free(m_mashbuf); Chris@13: fftwf_free(m_modulationbuf); Chris@12: fftwf_free(m_prevPhase); Chris@12: fftwf_free(m_prevAdjustedPhase); Chris@0: Chris@0: delete m_window; Chris@0: } Chris@0: Chris@0: size_t Chris@14: PhaseVocoderTimeStretcher::getProcessingLatency() const Chris@0: { Chris@0: return getWindowSize() - getInputIncrement(); Chris@0: } Chris@0: Chris@0: void Chris@14: PhaseVocoderTimeStretcher::process(float *input, float *output, size_t samples) Chris@0: { Chris@0: // We need to add samples from input to our internal buffer. When Chris@0: // we have m_windowSize samples in the buffer, we can process it, Chris@0: // move the samples back by m_n1 and write the output onto our Chris@0: // internal output buffer. If we have (samples * ratio) samples Chris@0: // in that, we can write m_n2 of them back to output and return Chris@0: // (otherwise we have to write zeroes). Chris@0: Chris@0: // When we process, we write m_wlen to our fixed output buffer Chris@0: // (m_mashbuf). We then pull out the first m_n2 samples from that Chris@0: // buffer, push them into the output ring buffer, and shift Chris@0: // m_mashbuf left by that amount. Chris@0: Chris@0: // The processing latency is then m_wlen - m_n2. Chris@0: Chris@0: size_t consumed = 0; Chris@0: Chris@14: #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER Chris@14: std::cerr << "PhaseVocoderTimeStretcher::process(" << samples << ", consumed = " << consumed << "), writable " << m_inbuf.getWriteSpace() <<", readable "<< m_outbuf.getReadSpace() << std::endl; Chris@0: #endif Chris@0: Chris@0: while (consumed < samples) { Chris@0: Chris@0: size_t writable = m_inbuf.getWriteSpace(); Chris@0: writable = std::min(writable, samples - consumed); Chris@0: Chris@0: if (writable == 0) { Chris@0: //!!! then what? I don't think this should happen, but Chris@14: std::cerr << "WARNING: PhaseVocoderTimeStretcher::process: writable == 0" << std::endl; Chris@0: break; Chris@0: } Chris@0: Chris@14: #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER Chris@0: std::cerr << "writing " << writable << " from index " << consumed << " to inbuf, consumed will be " << consumed + writable << std::endl; Chris@0: #endif Chris@0: m_inbuf.write(input + consumed, writable); Chris@0: consumed += writable; Chris@0: Chris@0: while (m_inbuf.getReadSpace() >= m_wlen && Chris@0: m_outbuf.getWriteSpace() >= m_n2) { Chris@0: Chris@0: // We know we have at least m_wlen samples available Chris@0: // in m_inbuf. We need to peek m_wlen of them for Chris@0: // processing, and then read m_n1 to advance the read Chris@0: // pointer. Chris@0: Chris@0: size_t got = m_inbuf.peek(m_dbuf, m_wlen); Chris@0: assert(got == m_wlen); Chris@0: Chris@13: processBlock(m_dbuf, m_mashbuf, m_modulationbuf); Chris@0: Chris@14: #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER Chris@0: std::cerr << "writing first " << m_n2 << " from mashbuf, skipping " << m_n1 << " on inbuf " << std::endl; Chris@0: #endif Chris@0: m_inbuf.skip(m_n1); Chris@13: Chris@13: for (size_t i = 0; i < m_n2; ++i) { Chris@13: if (m_modulationbuf[i] > 0.f) { Chris@13: m_mashbuf[i] /= m_modulationbuf[i]; Chris@13: } Chris@13: } Chris@13: Chris@0: m_outbuf.write(m_mashbuf, m_n2); Chris@0: Chris@0: for (size_t i = 0; i < m_wlen - m_n2; ++i) { Chris@0: m_mashbuf[i] = m_mashbuf[i + m_n2]; Chris@13: m_modulationbuf[i] = m_modulationbuf[i + m_n2]; Chris@0: } Chris@13: Chris@0: for (size_t i = m_wlen - m_n2; i < m_wlen; ++i) { Chris@0: m_mashbuf[i] = 0.0f; Chris@13: m_modulationbuf[i] = 0.0f; Chris@0: } Chris@0: } Chris@0: Chris@14: // std::cerr << "WARNING: PhaseVocoderTimeStretcher::process: writespace not enough for output increment (" << m_outbuf.getWriteSpace() << " < " << m_n2 << ")" << std::endl; Chris@0: // } Chris@0: Chris@14: #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER Chris@0: std::cerr << "loop ended: inbuf read space " << m_inbuf.getReadSpace() << ", outbuf write space " << m_outbuf.getWriteSpace() << std::endl; Chris@0: #endif Chris@0: } Chris@0: Chris@12: size_t toRead = lrintf(samples * m_ratio); Chris@12: Chris@12: if (m_outbuf.getReadSpace() < toRead) { Chris@14: std::cerr << "WARNING: PhaseVocoderTimeStretcher::process: not enough data (yet?) (" << m_outbuf.getReadSpace() << " < " << toRead << ")" << std::endl; Chris@12: size_t fill = toRead - m_outbuf.getReadSpace(); Chris@0: for (size_t i = 0; i < fill; ++i) { Chris@0: output[i] = 0.0; Chris@0: } Chris@0: m_outbuf.read(output + fill, m_outbuf.getReadSpace()); Chris@0: } else { Chris@14: #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER Chris@12: std::cerr << "enough data - writing " << toRead << " from outbuf" << std::endl; Chris@0: #endif Chris@12: m_outbuf.read(output, toRead); Chris@0: } Chris@0: Chris@14: #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER Chris@14: std::cerr << "PhaseVocoderTimeStretcher::process returning" << std::endl; Chris@0: #endif Chris@0: } Chris@0: Chris@0: void Chris@14: PhaseVocoderTimeStretcher::processBlock(float *buf, float *out, float *modulation) Chris@0: { Chris@0: size_t i; Chris@0: Chris@0: // buf contains m_wlen samples; out contains enough space for Chris@0: // m_wlen * ratio samples (we mix into out, rather than replacing) Chris@0: Chris@14: #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER Chris@14: std::cerr << "PhaseVocoderTimeStretcher::processBlock" << std::endl; Chris@0: #endif Chris@0: Chris@0: m_window->cut(buf); Chris@0: Chris@0: for (i = 0; i < m_wlen/2; ++i) { Chris@0: float temp = buf[i]; Chris@0: buf[i] = buf[i + m_wlen/2]; Chris@0: buf[i + m_wlen/2] = temp; Chris@0: } Chris@0: Chris@0: for (i = 0; i < m_wlen; ++i) { Chris@0: m_time[i][0] = buf[i]; Chris@0: m_time[i][1] = 0.0; Chris@0: } Chris@0: Chris@0: fftwf_execute(m_plan); // m_time -> m_freq Chris@0: Chris@0: for (i = 0; i < m_wlen; ++i) { Chris@0: Chris@0: float mag = sqrtf(m_freq[i][0] * m_freq[i][0] + Chris@0: m_freq[i][1] * m_freq[i][1]); Chris@0: Chris@12: float phase = princargf(atan2f(m_freq[i][1], m_freq[i][0])); Chris@12: Chris@12: float omega = (2 * M_PI * m_n1 * i) / m_wlen; Chris@0: Chris@12: float expectedPhase = m_prevPhase[i] + omega; Chris@12: Chris@12: float phaseError = princargf(phase - expectedPhase); Chris@12: Chris@12: float phaseIncrement = (omega + phaseError) / m_n1; Chris@12: Chris@12: float adjustedPhase = m_prevAdjustedPhase[i] + m_n2 * phaseIncrement; Chris@0: Chris@12: float real = mag * cosf(adjustedPhase); Chris@12: float imag = mag * sinf(adjustedPhase); Chris@0: m_freq[i][0] = real; Chris@0: m_freq[i][1] = imag; Chris@12: Chris@12: m_prevPhase[i] = phase; Chris@12: m_prevAdjustedPhase[i] = adjustedPhase; Chris@0: } Chris@0: Chris@0: fftwf_execute(m_iplan); // m_freq -> in, inverse fft Chris@0: Chris@0: for (i = 0; i < m_wlen/2; ++i) { Chris@0: float temp = buf[i] / m_wlen; Chris@0: buf[i] = buf[i + m_wlen/2] / m_wlen; Chris@0: buf[i + m_wlen/2] = temp; Chris@0: } Chris@0: Chris@0: m_window->cut(buf); Chris@13: /* Chris@0: int div = m_wlen / m_n2; Chris@0: if (div > 1) div /= 2; Chris@0: for (i = 0; i < m_wlen; ++i) { Chris@0: buf[i] /= div; Chris@0: } Chris@13: */ Chris@0: for (i = 0; i < m_wlen; ++i) { Chris@0: out[i] += buf[i]; Chris@13: modulation[i] += m_window->getValue(i); Chris@0: } Chris@0: }