Mercurial > hg > sonic-visualiser
view audioio/IntegerTimeStretcher.cpp @ 13:00ed645f4175
* various fixes in the time stretcher
author | Chris Cannam |
---|---|
date | Tue, 12 Sep 2006 19:13:12 +0000 |
parents | ee967635c728 |
children |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006 Chris Cannam. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "IntegerTimeStretcher.h" #include <iostream> #include <cassert> //#define DEBUG_INTEGER_TIME_STRETCHER 1 IntegerTimeStretcher::IntegerTimeStretcher(float ratio, size_t maxProcessInputBlockSize, size_t inputIncrement, size_t windowSize, WindowType windowType) : m_ratio(ratio), m_n1(inputIncrement), m_n2(lrintf(m_n1 * ratio)), m_wlen(std::max(windowSize, m_n2 * 2)), m_inbuf(m_wlen), m_outbuf(maxProcessInputBlockSize * ratio + 1024) //!!! { m_window = new Window<float>(windowType, m_wlen), m_time = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * m_wlen); m_freq = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * m_wlen); m_dbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen); m_mashbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen); m_modulationbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen); m_prevPhase = (float *)fftwf_malloc(sizeof(float) * m_wlen); m_prevAdjustedPhase = (float *)fftwf_malloc(sizeof(float) * m_wlen); m_plan = fftwf_plan_dft_1d(m_wlen, m_time, m_freq, FFTW_FORWARD, FFTW_ESTIMATE); m_iplan = fftwf_plan_dft_c2r_1d(m_wlen, m_freq, m_dbuf, FFTW_ESTIMATE); for (int i = 0; i < m_wlen; ++i) { m_mashbuf[i] = 0.0; m_modulationbuf[i] = 0.0; m_prevPhase[i] = 0.0; m_prevAdjustedPhase[i] = 0.0; } } IntegerTimeStretcher::~IntegerTimeStretcher() { std::cerr << "IntegerTimeStretcher::~IntegerTimeStretcher" << std::endl; fftwf_destroy_plan(m_plan); fftwf_destroy_plan(m_iplan); fftwf_free(m_time); fftwf_free(m_freq); fftwf_free(m_dbuf); fftwf_free(m_mashbuf); fftwf_free(m_modulationbuf); fftwf_free(m_prevPhase); fftwf_free(m_prevAdjustedPhase); delete m_window; } size_t IntegerTimeStretcher::getProcessingLatency() const { return getWindowSize() - getInputIncrement(); } void IntegerTimeStretcher::process(float *input, float *output, size_t samples) { // We need to add samples from input to our internal buffer. When // we have m_windowSize samples in the buffer, we can process it, // move the samples back by m_n1 and write the output onto our // internal output buffer. If we have (samples * ratio) samples // in that, we can write m_n2 of them back to output and return // (otherwise we have to write zeroes). // When we process, we write m_wlen to our fixed output buffer // (m_mashbuf). We then pull out the first m_n2 samples from that // buffer, push them into the output ring buffer, and shift // m_mashbuf left by that amount. // The processing latency is then m_wlen - m_n2. size_t consumed = 0; #ifdef DEBUG_INTEGER_TIME_STRETCHER std::cerr << "IntegerTimeStretcher::process(" << samples << ", consumed = " << consumed << "), writable " << m_inbuf.getWriteSpace() <<", readable "<< m_outbuf.getReadSpace() << std::endl; #endif while (consumed < samples) { size_t writable = m_inbuf.getWriteSpace(); writable = std::min(writable, samples - consumed); if (writable == 0) { //!!! then what? I don't think this should happen, but std::cerr << "WARNING: IntegerTimeStretcher::process: writable == 0" << std::endl; break; } #ifdef DEBUG_INTEGER_TIME_STRETCHER std::cerr << "writing " << writable << " from index " << consumed << " to inbuf, consumed will be " << consumed + writable << std::endl; #endif m_inbuf.write(input + consumed, writable); consumed += writable; while (m_inbuf.getReadSpace() >= m_wlen && m_outbuf.getWriteSpace() >= m_n2) { // We know we have at least m_wlen samples available // in m_inbuf. We need to peek m_wlen of them for // processing, and then read m_n1 to advance the read // pointer. size_t got = m_inbuf.peek(m_dbuf, m_wlen); assert(got == m_wlen); processBlock(m_dbuf, m_mashbuf, m_modulationbuf); #ifdef DEBUG_INTEGER_TIME_STRETCHER std::cerr << "writing first " << m_n2 << " from mashbuf, skipping " << m_n1 << " on inbuf " << std::endl; #endif m_inbuf.skip(m_n1); for (size_t i = 0; i < m_n2; ++i) { if (m_modulationbuf[i] > 0.f) { m_mashbuf[i] /= m_modulationbuf[i]; } } m_outbuf.write(m_mashbuf, m_n2); for (size_t i = 0; i < m_wlen - m_n2; ++i) { m_mashbuf[i] = m_mashbuf[i + m_n2]; m_modulationbuf[i] = m_modulationbuf[i + m_n2]; } for (size_t i = m_wlen - m_n2; i < m_wlen; ++i) { m_mashbuf[i] = 0.0f; m_modulationbuf[i] = 0.0f; } } // std::cerr << "WARNING: IntegerTimeStretcher::process: writespace not enough for output increment (" << m_outbuf.getWriteSpace() << " < " << m_n2 << ")" << std::endl; // } #ifdef DEBUG_INTEGER_TIME_STRETCHER std::cerr << "loop ended: inbuf read space " << m_inbuf.getReadSpace() << ", outbuf write space " << m_outbuf.getWriteSpace() << std::endl; #endif } size_t toRead = lrintf(samples * m_ratio); if (m_outbuf.getReadSpace() < toRead) { std::cerr << "WARNING: IntegerTimeStretcher::process: not enough data (yet?) (" << m_outbuf.getReadSpace() << " < " << toRead << ")" << std::endl; size_t fill = toRead - m_outbuf.getReadSpace(); for (size_t i = 0; i < fill; ++i) { output[i] = 0.0; } m_outbuf.read(output + fill, m_outbuf.getReadSpace()); } else { #ifdef DEBUG_INTEGER_TIME_STRETCHER std::cerr << "enough data - writing " << toRead << " from outbuf" << std::endl; #endif m_outbuf.read(output, toRead); } #ifdef DEBUG_INTEGER_TIME_STRETCHER std::cerr << "IntegerTimeStretcher::process returning" << std::endl; #endif } void IntegerTimeStretcher::processBlock(float *buf, float *out, float *modulation) { size_t i; // buf contains m_wlen samples; out contains enough space for // m_wlen * ratio samples (we mix into out, rather than replacing) #ifdef DEBUG_INTEGER_TIME_STRETCHER std::cerr << "IntegerTimeStretcher::processBlock" << std::endl; #endif m_window->cut(buf); for (i = 0; i < m_wlen/2; ++i) { float temp = buf[i]; buf[i] = buf[i + m_wlen/2]; buf[i + m_wlen/2] = temp; } for (i = 0; i < m_wlen; ++i) { m_time[i][0] = buf[i]; m_time[i][1] = 0.0; } fftwf_execute(m_plan); // m_time -> m_freq for (i = 0; i < m_wlen; ++i) { float mag = sqrtf(m_freq[i][0] * m_freq[i][0] + m_freq[i][1] * m_freq[i][1]); float phase = princargf(atan2f(m_freq[i][1], m_freq[i][0])); float omega = (2 * M_PI * m_n1 * i) / m_wlen; float expectedPhase = m_prevPhase[i] + omega; float phaseError = princargf(phase - expectedPhase); float phaseIncrement = (omega + phaseError) / m_n1; float adjustedPhase = m_prevAdjustedPhase[i] + m_n2 * phaseIncrement; float real = mag * cosf(adjustedPhase); float imag = mag * sinf(adjustedPhase); m_freq[i][0] = real; m_freq[i][1] = imag; m_prevPhase[i] = phase; m_prevAdjustedPhase[i] = adjustedPhase; } fftwf_execute(m_iplan); // m_freq -> in, inverse fft for (i = 0; i < m_wlen/2; ++i) { float temp = buf[i] / m_wlen; buf[i] = buf[i + m_wlen/2] / m_wlen; buf[i + m_wlen/2] = temp; } m_window->cut(buf); /* int div = m_wlen / m_n2; if (div > 1) div /= 2; for (i = 0; i < m_wlen; ++i) { buf[i] /= div; } */ for (i = 0; i < m_wlen; ++i) { out[i] += buf[i]; modulation[i] += m_window->getValue(i); } }