Mercurial > hg > sonic-visualiser
view audioio/PhaseVocoderTimeStretcher.cpp @ 44:5a72bf7490ae
...
author | Chris Cannam |
---|---|
date | Wed, 04 Oct 2006 14:01:28 +0000 |
parents | e3b32dc5180b |
children | 76cc2c424268 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006 Chris Cannam. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "PhaseVocoderTimeStretcher.h" #include <iostream> #include <cassert> #include <QMutexLocker> //#define DEBUG_PHASE_VOCODER_TIME_STRETCHER 1 PhaseVocoderTimeStretcher::PhaseVocoderTimeStretcher(size_t sampleRate, size_t channels, float ratio, bool sharpen, size_t maxOutputBlockSize) : m_sampleRate(sampleRate), m_channels(channels), m_maxOutputBlockSize(maxOutputBlockSize), m_ratio(ratio), m_sharpen(sharpen), m_totalCount(0), m_transientCount(0), m_n2sum(0), m_mutex(new QMutex()) { initialise(); } PhaseVocoderTimeStretcher::~PhaseVocoderTimeStretcher() { std::cerr << "PhaseVocoderTimeStretcher::~PhaseVocoderTimeStretcher" << std::endl; cleanup(); delete m_mutex; } void PhaseVocoderTimeStretcher::initialise() { std::cerr << "PhaseVocoderTimeStretcher::initialise" << std::endl; calculateParameters(); m_analysisWindow = new Window<float>(HanningWindow, m_wlen); m_synthesisWindow = new Window<float>(HanningWindow, m_wlen); m_prevPhase = new float *[m_channels]; m_prevAdjustedPhase = new float *[m_channels]; m_prevTransientMag = (float *)fftwf_malloc(sizeof(float) * (m_wlen / 2 + 1)); m_prevTransientScore = 0; m_prevTransient = false; m_tempbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen); m_time = new float *[m_channels]; m_freq = new fftwf_complex *[m_channels]; m_plan = new fftwf_plan[m_channels]; m_iplan = new fftwf_plan[m_channels]; m_inbuf = new RingBuffer<float> *[m_channels]; m_outbuf = new RingBuffer<float> *[m_channels]; m_mashbuf = new float *[m_channels]; m_modulationbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen); for (size_t c = 0; c < m_channels; ++c) { m_prevPhase[c] = (float *)fftwf_malloc(sizeof(float) * (m_wlen / 2 + 1)); m_prevAdjustedPhase[c] = (float *)fftwf_malloc(sizeof(float) * (m_wlen / 2 + 1)); m_time[c] = (float *)fftwf_malloc(sizeof(float) * m_wlen); m_freq[c] = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * (m_wlen / 2 + 1)); m_plan[c] = fftwf_plan_dft_r2c_1d(m_wlen, m_time[c], m_freq[c], FFTW_ESTIMATE); m_iplan[c] = fftwf_plan_dft_c2r_1d(m_wlen, m_freq[c], m_time[c], FFTW_ESTIMATE); m_outbuf[c] = new RingBuffer<float> ((m_maxOutputBlockSize + m_wlen) * 2); m_inbuf[c] = new RingBuffer<float> (lrintf(m_outbuf[c]->getSize() / m_ratio) + m_wlen); std::cerr << "making inbuf size " << m_inbuf[c]->getSize() << " (outbuf size is " << m_outbuf[c]->getSize() << ", ratio " << m_ratio << ")" << std::endl; m_mashbuf[c] = (float *)fftwf_malloc(sizeof(float) * m_wlen); for (size_t i = 0; i < m_wlen; ++i) { m_mashbuf[c][i] = 0.0; } for (size_t i = 0; i <= m_wlen/2; ++i) { m_prevPhase[c][i] = 0.0; m_prevAdjustedPhase[c][i] = 0.0; } } for (size_t i = 0; i < m_wlen; ++i) { m_modulationbuf[i] = 0.0; } for (size_t i = 0; i <= m_wlen/2; ++i) { m_prevTransientMag[i] = 0.0; } } void PhaseVocoderTimeStretcher::calculateParameters() { std::cerr << "PhaseVocoderTimeStretcher::calculateParameters" << std::endl; m_wlen = 1024; //!!! In transient sharpening mode, we need to pick the window //length so as to be more or less fixed in audio duration (i.e. we //need to exploit the sample rate) //!!! have to work out the relationship between wlen and transient //threshold if (m_ratio < 1) { if (m_ratio < 0.4) { m_n1 = 1024; m_wlen = 2048; } else if (m_ratio < 0.8) { m_n1 = 512; } else { m_n1 = 256; } if (shouldSharpen()) { m_wlen = 2048; } m_n2 = lrintf(m_n1 * m_ratio); } else { if (m_ratio > 2) { m_n2 = 512; m_wlen = 4096; } else if (m_ratio > 1.6) { m_n2 = 384; m_wlen = 2048; } else { m_n2 = 256; } if (shouldSharpen()) { if (m_wlen < 2048) m_wlen = 2048; } m_n1 = lrintf(m_n2 / m_ratio); } m_transientThreshold = lrintf(m_wlen / 4.5); m_totalCount = 0; m_transientCount = 0; m_n2sum = 0; std::cerr << "PhaseVocoderTimeStretcher: channels = " << m_channels << ", ratio = " << m_ratio << ", n1 = " << m_n1 << ", n2 = " << m_n2 << ", wlen = " << m_wlen << ", max = " << m_maxOutputBlockSize << std::endl; // << ", outbuflen = " << m_outbuf[0]->getSize() << std::endl; } void PhaseVocoderTimeStretcher::cleanup() { std::cerr << "PhaseVocoderTimeStretcher::cleanup" << std::endl; for (size_t c = 0; c < m_channels; ++c) { fftwf_destroy_plan(m_plan[c]); fftwf_destroy_plan(m_iplan[c]); fftwf_free(m_time[c]); fftwf_free(m_freq[c]); fftwf_free(m_mashbuf[c]); fftwf_free(m_prevPhase[c]); fftwf_free(m_prevAdjustedPhase[c]); delete m_inbuf[c]; delete m_outbuf[c]; } fftwf_free(m_tempbuf); fftwf_free(m_modulationbuf); fftwf_free(m_prevTransientMag); delete[] m_prevPhase; delete[] m_prevAdjustedPhase; delete[] m_inbuf; delete[] m_outbuf; delete[] m_mashbuf; delete[] m_time; delete[] m_freq; delete[] m_plan; delete[] m_iplan; delete m_analysisWindow; delete m_synthesisWindow; } void PhaseVocoderTimeStretcher::setRatio(float ratio) { QMutexLocker locker(m_mutex); size_t formerWlen = m_wlen; m_ratio = ratio; calculateParameters(); if (m_wlen == formerWlen) { // This is the only container whose size depends on m_ratio RingBuffer<float> **newin = new RingBuffer<float> *[m_channels]; size_t formerSize = m_inbuf[0]->getSize(); size_t newSize = lrintf(m_outbuf[0]->getSize() / m_ratio) + m_wlen; std::cerr << "resizing inbuf from " << formerSize << " to " << newSize << " (outbuf size is " << m_outbuf[0]->getSize() << ", ratio " << m_ratio << ")" << std::endl; if (formerSize != newSize) { size_t ready = m_inbuf[0]->getReadSpace(); for (size_t c = 0; c < m_channels; ++c) { newin[c] = new RingBuffer<float>(newSize); } if (ready > 0) { size_t copy = std::min(ready, newSize); float *tmp = new float[ready]; for (size_t c = 0; c < m_channels; ++c) { m_inbuf[c]->read(tmp, ready); newin[c]->write(tmp + ready - copy, copy); } delete[] tmp; } for (size_t c = 0; c < m_channels; ++c) { delete m_inbuf[c]; } delete[] m_inbuf; m_inbuf = newin; } } else { std::cerr << "wlen changed" << std::endl; cleanup(); initialise(); } } size_t PhaseVocoderTimeStretcher::getProcessingLatency() const { return getWindowSize() - getInputIncrement(); } size_t PhaseVocoderTimeStretcher::getRequiredInputSamples() const { QMutexLocker locker(m_mutex); if (m_inbuf[0]->getReadSpace() >= m_wlen) return 0; return m_wlen - m_inbuf[0]->getReadSpace(); } void PhaseVocoderTimeStretcher::putInput(float **input, size_t samples) { QMutexLocker locker(m_mutex); // We need to add samples from input to our internal buffer. When // we have m_windowSize samples in the buffer, we can process it, // move the samples back by m_n1 and write the output onto our // internal output buffer. If we have (samples * ratio) samples // in that, we can write m_n2 of them back to output and return // (otherwise we have to write zeroes). // When we process, we write m_wlen to our fixed output buffer // (m_mashbuf). We then pull out the first m_n2 samples from that // buffer, push them into the output ring buffer, and shift // m_mashbuf left by that amount. // The processing latency is then m_wlen - m_n2. size_t consumed = 0; while (consumed < samples) { size_t writable = m_inbuf[0]->getWriteSpace(); writable = std::min(writable, samples - consumed); if (writable == 0) { #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER std::cerr << "WARNING: PhaseVocoderTimeStretcher::putInput: writable == 0 (inbuf has " << m_inbuf[0]->getReadSpace() << " samples available for reading, space for " << m_inbuf[0]->getWriteSpace() << " more)" << std::endl; #endif if (m_inbuf[0]->getReadSpace() < m_wlen || m_outbuf[0]->getWriteSpace() < m_n2) { std::cerr << "WARNING: PhaseVocoderTimeStretcher::putInput: Inbuf has " << m_inbuf[0]->getReadSpace() << ", outbuf has space for " << m_outbuf[0]->getWriteSpace() << " (n2 = " << m_n2 << ", wlen = " << m_wlen << "), won't be able to process" << std::endl; break; } } else { #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER std::cerr << "writing " << writable << " from index " << consumed << " to inbuf, consumed will be " << consumed + writable << std::endl; #endif for (size_t c = 0; c < m_channels; ++c) { m_inbuf[c]->write(input[c] + consumed, writable); } consumed += writable; } while (m_inbuf[0]->getReadSpace() >= m_wlen && m_outbuf[0]->getWriteSpace() >= m_n2) { // We know we have at least m_wlen samples available // in m_inbuf. We need to peek m_wlen of them for // processing, and then read m_n1 to advance the read // pointer. for (size_t c = 0; c < m_channels; ++c) { size_t got = m_inbuf[c]->peek(m_tempbuf, m_wlen); assert(got == m_wlen); analyseBlock(c, m_tempbuf); } bool transient = false; if (shouldSharpen()) transient = isTransient(); size_t n2 = m_n2; if (transient) { n2 = m_n1; } ++m_totalCount; if (transient) ++m_transientCount; m_n2sum += n2; // std::cerr << "ratio for last 10: " <<last10num << "/" << (10 * m_n1) << " = " << float(last10num) / float(10 * m_n1) << " (should be " << m_ratio << ")" << std::endl; if (m_totalCount > 50 && m_transientCount < m_totalCount) { int fixed = lrintf(m_transientCount * m_n1); int squashy = m_n2sum - fixed; int idealTotal = lrintf(m_totalCount * m_n1 * m_ratio); int idealSquashy = idealTotal - fixed; int squashyCount = m_totalCount - m_transientCount; n2 = lrintf(idealSquashy / squashyCount); #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER if (n2 != m_n2) { std::cerr << m_n2 << " -> " << n2 << std::endl; } #endif } for (size_t c = 0; c < m_channels; ++c) { synthesiseBlock(c, m_mashbuf[c], c == 0 ? m_modulationbuf : 0, m_prevTransient ? m_n1 : m_n2); #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER std::cerr << "writing first " << m_n2 << " from mashbuf, skipping " << m_n1 << " on inbuf " << std::endl; #endif m_inbuf[c]->skip(m_n1); for (size_t i = 0; i < n2; ++i) { if (m_modulationbuf[i] > 0.f) { m_mashbuf[c][i] /= m_modulationbuf[i]; } } m_outbuf[c]->write(m_mashbuf[c], n2); for (size_t i = 0; i < m_wlen - n2; ++i) { m_mashbuf[c][i] = m_mashbuf[c][i + n2]; } for (size_t i = m_wlen - n2; i < m_wlen; ++i) { m_mashbuf[c][i] = 0.0f; } } m_prevTransient = transient; for (size_t i = 0; i < m_wlen - n2; ++i) { m_modulationbuf[i] = m_modulationbuf[i + n2]; } for (size_t i = m_wlen - n2; i < m_wlen; ++i) { m_modulationbuf[i] = 0.0f; } if (!transient) m_n2 = n2; } #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER std::cerr << "loop ended: inbuf read space " << m_inbuf[0]->getReadSpace() << ", outbuf write space " << m_outbuf[0]->getWriteSpace() << std::endl; #endif } #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER std::cerr << "PhaseVocoderTimeStretcher::putInput returning" << std::endl; #endif // std::cerr << "ratio: nominal: " << getRatio() << " actual: " // << m_total2 << "/" << m_total1 << " = " << float(m_total2) / float(m_total1) << " ideal: " << m_ratio << std::endl; } size_t PhaseVocoderTimeStretcher::getAvailableOutputSamples() const { QMutexLocker locker(m_mutex); return m_outbuf[0]->getReadSpace(); } void PhaseVocoderTimeStretcher::getOutput(float **output, size_t samples) { QMutexLocker locker(m_mutex); if (m_outbuf[0]->getReadSpace() < samples) { std::cerr << "WARNING: PhaseVocoderTimeStretcher::getOutput: not enough data (yet?) (" << m_outbuf[0]->getReadSpace() << " < " << samples << ")" << std::endl; size_t fill = samples - m_outbuf[0]->getReadSpace(); for (size_t c = 0; c < m_channels; ++c) { for (size_t i = 0; i < fill; ++i) { output[c][i] = 0.0; } m_outbuf[c]->read(output[c] + fill, m_outbuf[c]->getReadSpace()); } } else { #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER std::cerr << "enough data - writing " << samples << " from outbuf" << std::endl; #endif for (size_t c = 0; c < m_channels; ++c) { m_outbuf[c]->read(output[c], samples); } } #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER std::cerr << "PhaseVocoderTimeStretcher::getOutput returning" << std::endl; #endif } void PhaseVocoderTimeStretcher::analyseBlock(size_t c, float *buf) { size_t i; // buf contains m_wlen samples #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER std::cerr << "PhaseVocoderTimeStretcher::analyseBlock (channel " << c << ")" << std::endl; #endif m_analysisWindow->cut(buf); for (i = 0; i < m_wlen/2; ++i) { float temp = buf[i]; buf[i] = buf[i + m_wlen/2]; buf[i + m_wlen/2] = temp; } for (i = 0; i < m_wlen; ++i) { m_time[c][i] = buf[i]; } fftwf_execute(m_plan[c]); // m_time -> m_freq } bool PhaseVocoderTimeStretcher::isTransient() { int count = 0; for (size_t i = 0; i <= m_wlen/2; ++i) { float real = 0.f, imag = 0.f; for (size_t c = 0; c < m_channels; ++c) { real += m_freq[c][i][0]; imag += m_freq[c][i][1]; } float sqrmag = (real * real + imag * imag); if (m_prevTransientMag[i] > 0.f) { float diff = 10.f * log10f(sqrmag / m_prevTransientMag[i]); if (diff > 3.f) ++count; } m_prevTransientMag[i] = sqrmag; } bool isTransient = false; // if (count > m_transientThreshold && // count > m_prevTransientScore * 1.2) { if (count > m_prevTransientScore && count > m_transientThreshold && count - m_prevTransientScore > m_wlen / 20) { isTransient = true; std::cerr << "isTransient (count = " << count << ", prev = " << m_prevTransientScore << ", diff = " << count - m_prevTransientScore << ", ratio = " << (m_totalCount > 0 ? (float (m_n2sum) / float(m_totalCount * m_n1)) : 1.f) << ", ideal = " << m_ratio << ")" << std::endl; // } else { // std::cerr << " !transient (count = " << count << ", prev = " << m_prevTransientScore << ", diff = " << count - m_prevTransientScore << ")" << std::endl; } m_prevTransientScore = count; return isTransient; } void PhaseVocoderTimeStretcher::synthesiseBlock(size_t c, float *out, float *modulation, size_t lastStep) { bool unchanged = (lastStep == m_n1); for (size_t i = 0; i <= m_wlen/2; ++i) { float phase = princargf(atan2f(m_freq[c][i][1], m_freq[c][i][0])); float adjustedPhase = phase; if (!unchanged) { float mag = sqrtf(m_freq[c][i][0] * m_freq[c][i][0] + m_freq[c][i][1] * m_freq[c][i][1]); float omega = (2 * M_PI * m_n1 * i) / m_wlen; float expectedPhase = m_prevPhase[c][i] + omega; float phaseError = princargf(phase - expectedPhase); float phaseIncrement = (omega + phaseError) / m_n1; adjustedPhase = m_prevAdjustedPhase[c][i] + lastStep * phaseIncrement; float real = mag * cosf(adjustedPhase); float imag = mag * sinf(adjustedPhase); m_freq[c][i][0] = real; m_freq[c][i][1] = imag; } m_prevPhase[c][i] = phase; m_prevAdjustedPhase[c][i] = adjustedPhase; } fftwf_execute(m_iplan[c]); // m_freq -> m_time, inverse fft for (size_t i = 0; i < m_wlen/2; ++i) { float temp = m_time[c][i]; m_time[c][i] = m_time[c][i + m_wlen/2]; m_time[c][i + m_wlen/2] = temp; } for (size_t i = 0; i < m_wlen; ++i) { m_time[c][i] = m_time[c][i] / m_wlen; } m_synthesisWindow->cut(m_time[c]); for (size_t i = 0; i < m_wlen; ++i) { out[i] += m_time[c][i]; } if (modulation) { float area = m_analysisWindow->getArea(); for (size_t i = 0; i < m_wlen; ++i) { float val = m_synthesisWindow->getValue(i); modulation[i] += val * area; } } }