Mercurial > hg > sonic-visualiser
view audioio/AudioCallbackPlaySource.cpp @ 31:37af203dbd15
* Buffer size fixes in the time stretcher, to avoid running out of input data
for large or small ratios
author | Chris Cannam |
---|---|
date | Thu, 21 Sep 2006 09:43:41 +0000 |
parents | d88d117e0c34 |
children | e3b32dc5180b |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006 Chris Cannam. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "AudioCallbackPlaySource.h" #include "AudioGenerator.h" #include "data/model/Model.h" #include "view/ViewManager.h" #include "base/PlayParameterRepository.h" #include "data/model/DenseTimeValueModel.h" #include "data/model/SparseOneDimensionalModel.h" #include "PhaseVocoderTimeStretcher.h" #include <iostream> #include <cassert> //#define DEBUG_AUDIO_PLAY_SOURCE 1 //#define DEBUG_AUDIO_PLAY_SOURCE_PLAYING 1 //const size_t AudioCallbackPlaySource::m_ringBufferSize = 102400; const size_t AudioCallbackPlaySource::m_ringBufferSize = 131071; AudioCallbackPlaySource::AudioCallbackPlaySource(ViewManager *manager) : m_viewManager(manager), m_audioGenerator(new AudioGenerator()), m_readBuffers(0), m_writeBuffers(0), m_readBufferFill(0), m_writeBufferFill(0), m_bufferScavenger(1), m_sourceChannelCount(0), m_blockSize(1024), m_sourceSampleRate(0), m_targetSampleRate(0), m_playLatency(0), m_playing(false), m_exiting(false), m_lastModelEndFrame(0), m_outputLeft(0.0), m_outputRight(0.0), m_timeStretcher(0), m_fillThread(0), m_converter(0) { m_viewManager->setAudioPlaySource(this); connect(m_viewManager, SIGNAL(selectionChanged()), this, SLOT(selectionChanged())); connect(m_viewManager, SIGNAL(playLoopModeChanged()), this, SLOT(playLoopModeChanged())); connect(m_viewManager, SIGNAL(playSelectionModeChanged()), this, SLOT(playSelectionModeChanged())); connect(PlayParameterRepository::getInstance(), SIGNAL(playParametersChanged(PlayParameters *)), this, SLOT(playParametersChanged(PlayParameters *))); } AudioCallbackPlaySource::~AudioCallbackPlaySource() { m_exiting = true; if (m_fillThread) { m_condition.wakeAll(); m_fillThread->wait(); delete m_fillThread; } clearModels(); if (m_readBuffers != m_writeBuffers) { delete m_readBuffers; } delete m_writeBuffers; delete m_audioGenerator; m_bufferScavenger.scavenge(true); } void AudioCallbackPlaySource::addModel(Model *model) { if (m_models.find(model) != m_models.end()) return; bool canPlay = m_audioGenerator->addModel(model); m_mutex.lock(); m_models.insert(model); if (model->getEndFrame() > m_lastModelEndFrame) { m_lastModelEndFrame = model->getEndFrame(); } bool buffersChanged = false, srChanged = false; size_t modelChannels = 1; DenseTimeValueModel *dtvm = dynamic_cast<DenseTimeValueModel *>(model); if (dtvm) modelChannels = dtvm->getChannelCount(); if (modelChannels > m_sourceChannelCount) { m_sourceChannelCount = modelChannels; } // std::cerr << "Adding model with " << modelChannels << " channels " << std::endl; if (m_sourceSampleRate == 0) { m_sourceSampleRate = model->getSampleRate(); srChanged = true; } else if (model->getSampleRate() != m_sourceSampleRate) { // If this is a dense time-value model and we have no other, we // can just switch to this model's sample rate if (dtvm) { bool conflicting = false; for (std::set<Model *>::const_iterator i = m_models.begin(); i != m_models.end(); ++i) { if (*i != dtvm && dynamic_cast<DenseTimeValueModel *>(*i)) { std::cerr << "AudioCallbackPlaySource::addModel: Conflicting dense time-value model " << *i << " found" << std::endl; conflicting = true; break; } } if (conflicting) { std::cerr << "AudioCallbackPlaySource::addModel: ERROR: " << "New model sample rate does not match" << std::endl << "existing model(s) (new " << model->getSampleRate() << " vs " << m_sourceSampleRate << "), playback will be wrong" << std::endl; emit sampleRateMismatch(model->getSampleRate(), m_sourceSampleRate, false); } else { m_sourceSampleRate = model->getSampleRate(); srChanged = true; } } } if (!m_writeBuffers || (m_writeBuffers->size() < getTargetChannelCount())) { clearRingBuffers(true, getTargetChannelCount()); buffersChanged = true; } else { if (canPlay) clearRingBuffers(true); } if (buffersChanged || srChanged) { if (m_converter) { src_delete(m_converter); m_converter = 0; } } m_mutex.unlock(); m_audioGenerator->setTargetChannelCount(getTargetChannelCount()); if (!m_fillThread) { m_fillThread = new AudioCallbackPlaySourceFillThread(*this); m_fillThread->start(); } #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cerr << "AudioCallbackPlaySource::addModel: emitting modelReplaced" << std::endl; #endif if (buffersChanged || srChanged) { emit modelReplaced(); } m_condition.wakeAll(); } void AudioCallbackPlaySource::removeModel(Model *model) { m_mutex.lock(); m_models.erase(model); if (m_models.empty()) { if (m_converter) { src_delete(m_converter); m_converter = 0; } m_sourceSampleRate = 0; } size_t lastEnd = 0; for (std::set<Model *>::const_iterator i = m_models.begin(); i != m_models.end(); ++i) { // std::cerr << "AudioCallbackPlaySource::removeModel(" << model << "): checking end frame on model " << *i << std::endl; if ((*i)->getEndFrame() > lastEnd) lastEnd = (*i)->getEndFrame(); // std::cerr << "(done, lastEnd now " << lastEnd << ")" << std::endl; } m_lastModelEndFrame = lastEnd; m_mutex.unlock(); m_audioGenerator->removeModel(model); clearRingBuffers(); } void AudioCallbackPlaySource::clearModels() { m_mutex.lock(); m_models.clear(); if (m_converter) { src_delete(m_converter); m_converter = 0; } m_lastModelEndFrame = 0; m_sourceSampleRate = 0; m_mutex.unlock(); m_audioGenerator->clearModels(); } void AudioCallbackPlaySource::clearRingBuffers(bool haveLock, size_t count) { if (!haveLock) m_mutex.lock(); if (count == 0) { if (m_writeBuffers) count = m_writeBuffers->size(); } size_t sf = m_readBufferFill; RingBuffer<float> *rb = getReadRingBuffer(0); if (rb) { //!!! This is incorrect if we're in a non-contiguous selection //Same goes for all related code (subtracting the read space //from the fill frame to try to establish where the effective //pre-resample/timestretch read pointer is) size_t rs = rb->getReadSpace(); if (rs < sf) sf -= rs; else sf = 0; } m_writeBufferFill = sf; if (m_readBuffers != m_writeBuffers) { delete m_writeBuffers; } m_writeBuffers = new RingBufferVector; for (size_t i = 0; i < count; ++i) { m_writeBuffers->push_back(new RingBuffer<float>(m_ringBufferSize)); } // std::cerr << "AudioCallbackPlaySource::clearRingBuffers: Created " // << count << " write buffers" << std::endl; if (!haveLock) { m_mutex.unlock(); } } void AudioCallbackPlaySource::play(size_t startFrame) { if (m_viewManager->getPlaySelectionMode() && !m_viewManager->getSelections().empty()) { MultiSelection::SelectionList selections = m_viewManager->getSelections(); MultiSelection::SelectionList::iterator i = selections.begin(); if (i != selections.end()) { if (startFrame < i->getStartFrame()) { startFrame = i->getStartFrame(); } else { MultiSelection::SelectionList::iterator j = selections.end(); --j; if (startFrame >= j->getEndFrame()) { startFrame = i->getStartFrame(); } } } } else { if (startFrame >= m_lastModelEndFrame) { startFrame = 0; } } // The fill thread will automatically empty its buffers before // starting again if we have not so far been playing, but not if // we're just re-seeking. m_mutex.lock(); if (m_playing) { m_readBufferFill = m_writeBufferFill = startFrame; if (m_readBuffers) { for (size_t c = 0; c < getTargetChannelCount(); ++c) { RingBuffer<float> *rb = getReadRingBuffer(c); if (rb) rb->reset(); } } if (m_converter) src_reset(m_converter); } else { if (m_converter) src_reset(m_converter); m_readBufferFill = m_writeBufferFill = startFrame; } m_mutex.unlock(); m_audioGenerator->reset(); bool changed = !m_playing; m_playing = true; m_condition.wakeAll(); if (changed) emit playStatusChanged(m_playing); } void AudioCallbackPlaySource::stop() { bool changed = m_playing; m_playing = false; m_condition.wakeAll(); if (changed) emit playStatusChanged(m_playing); } void AudioCallbackPlaySource::selectionChanged() { if (m_viewManager->getPlaySelectionMode()) { clearRingBuffers(); } } void AudioCallbackPlaySource::playLoopModeChanged() { clearRingBuffers(); } void AudioCallbackPlaySource::playSelectionModeChanged() { if (!m_viewManager->getSelections().empty()) { clearRingBuffers(); } } void AudioCallbackPlaySource::playParametersChanged(PlayParameters *params) { clearRingBuffers(); } void AudioCallbackPlaySource::setTargetBlockSize(size_t size) { // std::cerr << "AudioCallbackPlaySource::setTargetBlockSize() -> " << size << std::endl; assert(size < m_ringBufferSize); m_blockSize = size; } size_t AudioCallbackPlaySource::getTargetBlockSize() const { // std::cerr << "AudioCallbackPlaySource::getTargetBlockSize() -> " << m_blockSize << std::endl; return m_blockSize; } void AudioCallbackPlaySource::setTargetPlayLatency(size_t latency) { m_playLatency = latency; } size_t AudioCallbackPlaySource::getTargetPlayLatency() const { return m_playLatency; } size_t AudioCallbackPlaySource::getCurrentPlayingFrame() { bool resample = false; double ratio = 1.0; if (getSourceSampleRate() != getTargetSampleRate()) { resample = true; ratio = double(getSourceSampleRate()) / double(getTargetSampleRate()); } size_t readSpace = 0; for (size_t c = 0; c < getTargetChannelCount(); ++c) { RingBuffer<float> *rb = getReadRingBuffer(c); if (rb) { size_t spaceHere = rb->getReadSpace(); if (c == 0 || spaceHere < readSpace) readSpace = spaceHere; } } if (resample) { readSpace = size_t(readSpace * ratio + 0.1); } size_t latency = m_playLatency; if (resample) latency = size_t(m_playLatency * ratio + 0.1); PhaseVocoderTimeStretcher *timeStretcher = m_timeStretcher; if (timeStretcher) { latency += timeStretcher->getProcessingLatency(); } latency += readSpace; size_t bufferedFrame = m_readBufferFill; bool looping = m_viewManager->getPlayLoopMode(); bool constrained = (m_viewManager->getPlaySelectionMode() && !m_viewManager->getSelections().empty()); size_t framePlaying = bufferedFrame; if (looping && !constrained) { while (framePlaying < latency) framePlaying += m_lastModelEndFrame; } if (framePlaying > latency) framePlaying -= latency; else framePlaying = 0; if (!constrained) { if (!looping && framePlaying > m_lastModelEndFrame) { framePlaying = m_lastModelEndFrame; stop(); } return framePlaying; } MultiSelection::SelectionList selections = m_viewManager->getSelections(); MultiSelection::SelectionList::const_iterator i; i = selections.begin(); size_t rangeStart = i->getStartFrame(); i = selections.end(); --i; size_t rangeEnd = i->getEndFrame(); for (i = selections.begin(); i != selections.end(); ++i) { if (i->contains(bufferedFrame)) break; } size_t f = bufferedFrame; // std::cerr << "getCurrentPlayingFrame: f=" << f << ", latency=" << latency << ", rangeEnd=" << rangeEnd << std::endl; if (i == selections.end()) { --i; if (i->getEndFrame() + latency < f) { // std::cerr << "framePlaying = " << framePlaying << ", rangeEnd = " << rangeEnd << std::endl; if (!looping && (framePlaying > rangeEnd)) { // std::cerr << "STOPPING" << std::endl; stop(); return rangeEnd; } else { return framePlaying; } } else { // std::cerr << "latency <- " << latency << "-(" << f << "-" << i->getEndFrame() << ")" << std::endl; latency -= (f - i->getEndFrame()); f = i->getEndFrame(); } } // std::cerr << "i=(" << i->getStartFrame() << "," << i->getEndFrame() << ") f=" << f << ", latency=" << latency << std::endl; while (latency > 0) { size_t offset = f - i->getStartFrame(); if (offset >= latency) { if (f > latency) { framePlaying = f - latency; } else { framePlaying = 0; } break; } else { if (i == selections.begin()) { if (looping) { i = selections.end(); } } latency -= offset; --i; f = i->getEndFrame(); } } return framePlaying; } void AudioCallbackPlaySource::setOutputLevels(float left, float right) { m_outputLeft = left; m_outputRight = right; } bool AudioCallbackPlaySource::getOutputLevels(float &left, float &right) { left = m_outputLeft; right = m_outputRight; return true; } void AudioCallbackPlaySource::setTargetSampleRate(size_t sr) { m_targetSampleRate = sr; if (getSourceSampleRate() != getTargetSampleRate()) { int err = 0; m_converter = src_new(SRC_SINC_BEST_QUALITY, getTargetChannelCount(), &err); if (!m_converter) { std::cerr << "AudioCallbackPlaySource::setModel: ERROR in creating samplerate converter: " << src_strerror(err) << std::endl; emit sampleRateMismatch(getSourceSampleRate(), getTargetSampleRate(), false); } else { emit sampleRateMismatch(getSourceSampleRate(), getTargetSampleRate(), true); } } } size_t AudioCallbackPlaySource::getTargetSampleRate() const { if (m_targetSampleRate) return m_targetSampleRate; else return getSourceSampleRate(); } size_t AudioCallbackPlaySource::getSourceChannelCount() const { return m_sourceChannelCount; } size_t AudioCallbackPlaySource::getTargetChannelCount() const { if (m_sourceChannelCount < 2) return 2; return m_sourceChannelCount; } size_t AudioCallbackPlaySource::getSourceSampleRate() const { return m_sourceSampleRate; } void AudioCallbackPlaySource::setTimeStretch(float factor, bool sharpen, bool mono) { // Avoid locks -- create, assign, mark old one for scavenging // later (as a call to getSourceSamples may still be using it) PhaseVocoderTimeStretcher *existingStretcher = m_timeStretcher; size_t channels = getTargetChannelCount(); if (mono) channels = 1; if (existingStretcher && existingStretcher->getRatio() == factor && existingStretcher->getSharpening() == sharpen && existingStretcher->getChannelCount() == channels) { return; } if (factor != 1) { if (existingStretcher && existingStretcher->getSharpening() == sharpen && existingStretcher->getChannelCount() == channels) { existingStretcher->setRatio(factor); return; } PhaseVocoderTimeStretcher *newStretcher = new PhaseVocoderTimeStretcher (getTargetSampleRate(), channels, factor, sharpen, getTargetBlockSize()); m_timeStretcher = newStretcher; } else { m_timeStretcher = 0; } if (existingStretcher) { m_timeStretcherScavenger.claim(existingStretcher); } } size_t AudioCallbackPlaySource::getSourceSamples(size_t count, float **buffer) { if (!m_playing) { for (size_t ch = 0; ch < getTargetChannelCount(); ++ch) { for (size_t i = 0; i < count; ++i) { buffer[ch][i] = 0.0; } } return 0; } PhaseVocoderTimeStretcher *ts = m_timeStretcher; if (!ts || ts->getRatio() == 1) { size_t got = 0; for (size_t ch = 0; ch < getTargetChannelCount(); ++ch) { RingBuffer<float> *rb = getReadRingBuffer(ch); if (rb) { // this is marginally more likely to leave our channels in // sync after a processing failure than just passing "count": size_t request = count; if (ch > 0) request = got; got = rb->read(buffer[ch], request); #ifdef DEBUG_AUDIO_PLAY_SOURCE_PLAYING std::cout << "AudioCallbackPlaySource::getSamples: got " << got << " samples on channel " << ch << ", signalling for more (possibly)" << std::endl; #endif } for (size_t ch = 0; ch < getTargetChannelCount(); ++ch) { for (size_t i = got; i < count; ++i) { buffer[ch][i] = 0.0; } } } m_condition.wakeAll(); return got; } float ratio = ts->getRatio(); // std::cout << "ratio = " << ratio << std::endl; size_t channels = getTargetChannelCount(); bool mix = (channels > 1 && ts->getChannelCount() == 1); size_t available; int warned = 0; //!!! // We want output blocks of e.g. 1024 (probably fixed, certainly // bounded). We can provide input blocks of any size (unbounded) // at the timestretcher's request. The input block for a given // output is approx output / ratio, but we can't predict it // exactly, for an adaptive timestretcher. The stretcher will // need some additional buffer space. while ((available = ts->getAvailableOutputSamples()) < count) { size_t reqd = lrintf((count - available) / ratio); reqd = std::max(reqd, ts->getRequiredInputSamples()); if (reqd == 0) reqd = 1; float *ib[channels]; size_t got = reqd; if (mix) { for (size_t c = 0; c < channels; ++c) { if (c == 0) ib[c] = new float[reqd]; //!!! fix -- this is a rt function else ib[c] = 0; RingBuffer<float> *rb = getReadRingBuffer(c); if (rb) { size_t gotHere; if (c > 0) gotHere = rb->readAdding(ib[0], got); else gotHere = rb->read(ib[0], got); if (gotHere < got) got = gotHere; } } } else { for (size_t c = 0; c < channels; ++c) { ib[c] = new float[reqd]; //!!! fix -- this is a rt function RingBuffer<float> *rb = getReadRingBuffer(c); if (rb) { size_t gotHere = rb->read(ib[c], got); if (gotHere < got) got = gotHere; } } } if (got < reqd) { std::cerr << "WARNING: Read underrun in playback (" << got << " < " << reqd << ")" << std::endl; } ts->putInput(ib, got); for (size_t c = 0; c < channels; ++c) { delete[] ib[c]; } if (got == 0) break; if (ts->getAvailableOutputSamples() == available) { std::cerr << "WARNING: AudioCallbackPlaySource::getSamples: Added " << got << " samples to time stretcher, created no new available output samples (warned = " << warned << ")" << std::endl; if (++warned == 5) break; } } ts->getOutput(buffer, count); if (mix) { for (size_t c = 1; c < channels; ++c) { for (size_t i = 0; i < count; ++i) { buffer[c][i] = buffer[0][i] / channels; } } for (size_t i = 0; i < count; ++i) { buffer[0][i] /= channels; } } m_condition.wakeAll(); return count; } // Called from fill thread, m_playing true, mutex held bool AudioCallbackPlaySource::fillBuffers() { static float *tmp = 0; static size_t tmpSize = 0; size_t space = 0; for (size_t c = 0; c < getTargetChannelCount(); ++c) { RingBuffer<float> *wb = getWriteRingBuffer(c); if (wb) { size_t spaceHere = wb->getWriteSpace(); if (c == 0 || spaceHere < space) space = spaceHere; } } if (space == 0) return false; size_t f = m_writeBufferFill; bool readWriteEqual = (m_readBuffers == m_writeBuffers); #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cout << "AudioCallbackPlaySourceFillThread: filling " << space << " frames" << std::endl; #endif #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cout << "buffered to " << f << " already" << std::endl; #endif bool resample = (getSourceSampleRate() != getTargetSampleRate()); #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cout << (resample ? "" : "not ") << "resampling (source " << getSourceSampleRate() << ", target " << getTargetSampleRate() << ")" << std::endl; #endif size_t channels = getTargetChannelCount(); size_t orig = space; size_t got = 0; static float **bufferPtrs = 0; static size_t bufferPtrCount = 0; if (bufferPtrCount < channels) { if (bufferPtrs) delete[] bufferPtrs; bufferPtrs = new float *[channels]; bufferPtrCount = channels; } size_t generatorBlockSize = m_audioGenerator->getBlockSize(); if (resample && !m_converter) { static bool warned = false; if (!warned) { std::cerr << "WARNING: sample rates differ, but no converter available!" << std::endl; warned = true; } } if (resample && m_converter) { double ratio = double(getTargetSampleRate()) / double(getSourceSampleRate()); orig = size_t(orig / ratio + 0.1); // orig must be a multiple of generatorBlockSize orig = (orig / generatorBlockSize) * generatorBlockSize; if (orig == 0) return false; size_t work = std::max(orig, space); // We only allocate one buffer, but we use it in two halves. // We place the non-interleaved values in the second half of // the buffer (orig samples for channel 0, orig samples for // channel 1 etc), and then interleave them into the first // half of the buffer. Then we resample back into the second // half (interleaved) and de-interleave the results back to // the start of the buffer for insertion into the ringbuffers. // What a faff -- especially as we've already de-interleaved // the audio data from the source file elsewhere before we // even reach this point. if (tmpSize < channels * work * 2) { delete[] tmp; tmp = new float[channels * work * 2]; tmpSize = channels * work * 2; } float *nonintlv = tmp + channels * work; float *intlv = tmp; float *srcout = tmp + channels * work; for (size_t c = 0; c < channels; ++c) { for (size_t i = 0; i < orig; ++i) { nonintlv[channels * i + c] = 0.0f; } } for (size_t c = 0; c < channels; ++c) { bufferPtrs[c] = nonintlv + c * orig; } got = mixModels(f, orig, bufferPtrs); // and interleave into first half for (size_t c = 0; c < channels; ++c) { for (size_t i = 0; i < got; ++i) { float sample = nonintlv[c * got + i]; intlv[channels * i + c] = sample; } } SRC_DATA data; data.data_in = intlv; data.data_out = srcout; data.input_frames = got; data.output_frames = work; data.src_ratio = ratio; data.end_of_input = 0; int err = src_process(m_converter, &data); // size_t toCopy = size_t(work * ratio + 0.1); size_t toCopy = size_t(got * ratio + 0.1); if (err) { std::cerr << "AudioCallbackPlaySourceFillThread: ERROR in samplerate conversion: " << src_strerror(err) << std::endl; //!!! Then what? } else { got = data.input_frames_used; toCopy = data.output_frames_gen; #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cerr << "Resampled " << got << " frames to " << toCopy << " frames" << std::endl; #endif } for (size_t c = 0; c < channels; ++c) { for (size_t i = 0; i < toCopy; ++i) { tmp[i] = srcout[channels * i + c]; } RingBuffer<float> *wb = getWriteRingBuffer(c); if (wb) wb->write(tmp, toCopy); } m_writeBufferFill = f; if (readWriteEqual) m_readBufferFill = f; } else { // space must be a multiple of generatorBlockSize space = (space / generatorBlockSize) * generatorBlockSize; if (space == 0) return false; if (tmpSize < channels * space) { delete[] tmp; tmp = new float[channels * space]; tmpSize = channels * space; } for (size_t c = 0; c < channels; ++c) { bufferPtrs[c] = tmp + c * space; for (size_t i = 0; i < space; ++i) { tmp[c * space + i] = 0.0f; } } size_t got = mixModels(f, space, bufferPtrs); for (size_t c = 0; c < channels; ++c) { RingBuffer<float> *wb = getWriteRingBuffer(c); if (wb) wb->write(bufferPtrs[c], got); #ifdef DEBUG_AUDIO_PLAY_SOURCE if (wb) std::cerr << "Wrote " << got << " frames for ch " << c << ", now " << wb->getReadSpace() << " to read" << std::endl; #endif } m_writeBufferFill = f; if (readWriteEqual) m_readBufferFill = f; //!!! how do we know when ended? need to mark up a fully-buffered flag and check this if we find the buffers empty in getSourceSamples } return true; } size_t AudioCallbackPlaySource::mixModels(size_t &frame, size_t count, float **buffers) { size_t processed = 0; size_t chunkStart = frame; size_t chunkSize = count; size_t selectionSize = 0; size_t nextChunkStart = chunkStart + chunkSize; bool looping = m_viewManager->getPlayLoopMode(); bool constrained = (m_viewManager->getPlaySelectionMode() && !m_viewManager->getSelections().empty()); static float **chunkBufferPtrs = 0; static size_t chunkBufferPtrCount = 0; size_t channels = getTargetChannelCount(); #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cerr << "Selection playback: start " << frame << ", size " << count <<", channels " << channels << std::endl; #endif if (chunkBufferPtrCount < channels) { if (chunkBufferPtrs) delete[] chunkBufferPtrs; chunkBufferPtrs = new float *[channels]; chunkBufferPtrCount = channels; } for (size_t c = 0; c < channels; ++c) { chunkBufferPtrs[c] = buffers[c]; } while (processed < count) { chunkSize = count - processed; nextChunkStart = chunkStart + chunkSize; selectionSize = 0; size_t fadeIn = 0, fadeOut = 0; if (constrained) { Selection selection = m_viewManager->getContainingSelection(chunkStart, true); if (selection.isEmpty()) { if (looping) { selection = *m_viewManager->getSelections().begin(); chunkStart = selection.getStartFrame(); fadeIn = 50; } } if (selection.isEmpty()) { chunkSize = 0; nextChunkStart = chunkStart; } else { selectionSize = selection.getEndFrame() - selection.getStartFrame(); if (chunkStart < selection.getStartFrame()) { chunkStart = selection.getStartFrame(); fadeIn = 50; } nextChunkStart = chunkStart + chunkSize; if (nextChunkStart >= selection.getEndFrame()) { nextChunkStart = selection.getEndFrame(); fadeOut = 50; } chunkSize = nextChunkStart - chunkStart; } } else if (looping && m_lastModelEndFrame > 0) { if (chunkStart >= m_lastModelEndFrame) { chunkStart = 0; } if (chunkSize > m_lastModelEndFrame - chunkStart) { chunkSize = m_lastModelEndFrame - chunkStart; } nextChunkStart = chunkStart + chunkSize; } // std::cerr << "chunkStart " << chunkStart << ", chunkSize " << chunkSize << ", nextChunkStart " << nextChunkStart << ", frame " << frame << ", count " << count << ", processed " << processed << std::endl; if (!chunkSize) { #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cerr << "Ending selection playback at " << nextChunkStart << std::endl; #endif // We need to maintain full buffers so that the other // thread can tell where it's got to in the playback -- so // return the full amount here frame = frame + count; return count; } #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cerr << "Selection playback: chunk at " << chunkStart << " -> " << nextChunkStart << " (size " << chunkSize << ")" << std::endl; #endif size_t got = 0; if (selectionSize < 100) { fadeIn = 0; fadeOut = 0; } else if (selectionSize < 300) { if (fadeIn > 0) fadeIn = 10; if (fadeOut > 0) fadeOut = 10; } if (fadeIn > 0) { if (processed * 2 < fadeIn) { fadeIn = processed * 2; } } if (fadeOut > 0) { if ((count - processed - chunkSize) * 2 < fadeOut) { fadeOut = (count - processed - chunkSize) * 2; } } for (std::set<Model *>::iterator mi = m_models.begin(); mi != m_models.end(); ++mi) { got = m_audioGenerator->mixModel(*mi, chunkStart, chunkSize, chunkBufferPtrs, fadeIn, fadeOut); } for (size_t c = 0; c < channels; ++c) { chunkBufferPtrs[c] += chunkSize; } processed += chunkSize; chunkStart = nextChunkStart; } #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cerr << "Returning selection playback " << processed << " frames to " << nextChunkStart << std::endl; #endif frame = nextChunkStart; return processed; } void AudioCallbackPlaySource::unifyRingBuffers() { if (m_readBuffers == m_writeBuffers) return; // only unify if there will be something to read for (size_t c = 0; c < getTargetChannelCount(); ++c) { RingBuffer<float> *wb = getWriteRingBuffer(c); if (wb) { if (wb->getReadSpace() < m_blockSize * 2) { if ((m_writeBufferFill + m_blockSize * 2) < m_lastModelEndFrame) { // OK, we don't have enough and there's more to // read -- don't unify until we can do better return; } } break; } } size_t rf = m_readBufferFill; RingBuffer<float> *rb = getReadRingBuffer(0); if (rb) { size_t rs = rb->getReadSpace(); //!!! incorrect when in non-contiguous selection, see comments elsewhere // std::cerr << "rs = " << rs << std::endl; if (rs < rf) rf -= rs; else rf = 0; } //std::cerr << "m_readBufferFill = " << m_readBufferFill << ", rf = " << rf << ", m_writeBufferFill = " << m_writeBufferFill << std::endl; size_t wf = m_writeBufferFill; size_t skip = 0; for (size_t c = 0; c < getTargetChannelCount(); ++c) { RingBuffer<float> *wb = getWriteRingBuffer(c); if (wb) { if (c == 0) { size_t wrs = wb->getReadSpace(); // std::cerr << "wrs = " << wrs << std::endl; if (wrs < wf) wf -= wrs; else wf = 0; // std::cerr << "wf = " << wf << std::endl; if (wf < rf) skip = rf - wf; if (skip == 0) break; } // std::cerr << "skipping " << skip << std::endl; wb->skip(skip); } } m_bufferScavenger.claim(m_readBuffers); m_readBuffers = m_writeBuffers; m_readBufferFill = m_writeBufferFill; // std::cerr << "unified" << std::endl; } void AudioCallbackPlaySource::AudioCallbackPlaySourceFillThread::run() { AudioCallbackPlaySource &s(m_source); #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cerr << "AudioCallbackPlaySourceFillThread starting" << std::endl; #endif s.m_mutex.lock(); bool previouslyPlaying = s.m_playing; bool work = false; while (!s.m_exiting) { s.unifyRingBuffers(); s.m_bufferScavenger.scavenge(); s.m_timeStretcherScavenger.scavenge(); if (work && s.m_playing && s.getSourceSampleRate()) { #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cout << "AudioCallbackPlaySourceFillThread: not waiting" << std::endl; #endif s.m_mutex.unlock(); s.m_mutex.lock(); } else { float ms = 100; if (s.getSourceSampleRate() > 0) { ms = float(m_ringBufferSize) / float(s.getSourceSampleRate()) * 1000.0; } if (s.m_playing) ms /= 10; #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cout << "AudioCallbackPlaySourceFillThread: waiting for " << ms << "ms..." << std::endl; #endif s.m_condition.wait(&s.m_mutex, size_t(ms)); } #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cout << "AudioCallbackPlaySourceFillThread: awoken" << std::endl; #endif work = false; if (!s.getSourceSampleRate()) continue; bool playing = s.m_playing; if (playing && !previouslyPlaying) { #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cout << "AudioCallbackPlaySourceFillThread: playback state changed, resetting" << std::endl; #endif for (size_t c = 0; c < s.getTargetChannelCount(); ++c) { RingBuffer<float> *rb = s.getReadRingBuffer(c); if (rb) rb->reset(); } } previouslyPlaying = playing; work = s.fillBuffers(); } s.m_mutex.unlock(); } #ifdef INCLUDE_MOCFILES #include "AudioCallbackPlaySource.moc.cpp" #endif