changeset 68:f2ca04532eac

(none)
author idamnjanovic
date Wed, 16 Mar 2011 14:13:48 +0000
parents 8c7f60968a9e
children 5f1f436057ca
files DL/RLS-DLA/private/add_dc.m DL/RLS-DLA/private/addtocols.c DL/RLS-DLA/private/addtocols.m DL/RLS-DLA/private/addtocols.mexa64 DL/RLS-DLA/private/col2imstep.c DL/RLS-DLA/private/col2imstep.m DL/RLS-DLA/private/col2imstep.mexa64 DL/RLS-DLA/private/collincomb.c DL/RLS-DLA/private/collincomb.m DL/RLS-DLA/private/collincomb.mexa64 DL/RLS-DLA/private/completeOps.m DL/RLS-DLA/private/countcover.m DL/RLS-DLA/private/diag_ids.m DL/RLS-DLA/private/dictdist.m DL/RLS-DLA/private/genPDF.m DL/RLS-DLA/private/genSampling.m DL/RLS-DLA/private/im2colstep.c DL/RLS-DLA/private/im2colstep.m DL/RLS-DLA/private/im2colstep.mexa64 DL/RLS-DLA/private/imnormalize.m DL/RLS-DLA/private/iswhole.m DL/RLS-DLA/private/make.m DL/RLS-DLA/private/mexutils.c DL/RLS-DLA/private/mexutils.h DL/RLS-DLA/private/myblas.c DL/RLS-DLA/private/myblas.h DL/RLS-DLA/private/normcols.m DL/RLS-DLA/private/omp2mex.c DL/RLS-DLA/private/omp2mex.m DL/RLS-DLA/private/omp2mex.mexa64 DL/RLS-DLA/private/ompcore.c DL/RLS-DLA/private/ompcore.h DL/RLS-DLA/private/ompmex.c DL/RLS-DLA/private/ompmex.m DL/RLS-DLA/private/ompmex.mexa64 DL/RLS-DLA/private/ompprof.c DL/RLS-DLA/private/ompprof.h DL/RLS-DLA/private/omputils.c DL/RLS-DLA/private/omputils.h DL/RLS-DLA/private/printf.m DL/RLS-DLA/private/pwsmoothfield.m DL/RLS-DLA/private/reggrid.m DL/RLS-DLA/private/remove_dc.m DL/RLS-DLA/private/rowlincomb.c DL/RLS-DLA/private/rowlincomb.m DL/RLS-DLA/private/rowlincomb.mexa64 DL/RLS-DLA/private/sampgrid.m DL/RLS-DLA/private/scalarToRGB.m DL/RLS-DLA/private/secs2hms.m DL/RLS-DLA/private/spdiag.m DL/RLS-DLA/private/sprow.c DL/RLS-DLA/private/sprow.m DL/RLS-DLA/private/sprow.mexa64 DL/RLS-DLA/private/thumbFromOp.m DL/RLS-DLA/private/thumbPlot.m DL/RLS-DLA/private/thumbwrite.m DL/RLS-DLA/private/timerclear.m DL/RLS-DLA/private/timereta.m DL/RLS-DLA/private/timerinit.m DL/RLS-DLA/private/updateFigure.m
diffstat 60 files changed, 0 insertions(+), 4766 deletions(-) [+]
line wrap: on
line diff
--- a/DL/RLS-DLA/private/add_dc.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,33 +0,0 @@
-function x = add_dc(y,dc,columns)
-%ADD_DC Add DC channel to signals.
-%   X = ADD_DC(Y,DC) adds the specified DC value to the (possibly
-%   multi-dimensional) signal Y, returning the result as X. DC should be a
-%   scalar value.
-%
-%   X = ADD_DC(Y,DC,'columns') where Y is a 2D matrix and DC is an array of
-%   length size(Y,2), treats the columns of Y as individual 1D signals, 
-%   adding to each one the corresponding DC value from the DC array. X is
-%   the same size as Y and contains the resulting signals.
-%
-%   See also REMOVE_DC.
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  April 2009
-
-
-if (nargin==3 && strcmpi(columns,'columns')), columns = 1;
-else columns = 0;
-end
-
-if (columns)
-  x = addtocols(y,dc);
-else
-  x = y + dc;
-end
-
-
-
--- a/DL/RLS-DLA/private/addtocols.c	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,85 +0,0 @@
-/**************************************************************************
- *
- * File name: addtocols.c
- *
- * Ron Rubinstein
- * Computer Science Department
- * Technion, Haifa 32000 Israel
- * ronrubin@cs
- *
- * Last Updated: 19.4.2009
- *
- *************************************************************************/
-
-
-#include "mex.h"
-
-
-/* Input Arguments */
-
-#define	X_IN	prhs[0]
-#define V_IN  prhs[1]
-
-
-/* Output Arguments */
-
-#define	Y_OUT	plhs[0]
-
-
-void mexFunction(int nlhs, mxArray *plhs[], 
-		             int nrhs, const mxArray*prhs[])
-     
-{ 
-    double *x, *y, *v, *xend;  
-    mwSize m,n,m1,n1;
-    mwIndex counter; 
-    
-    
-    /* Check for proper number of arguments */
-    
-    if (nrhs != 2) {
-      mexErrMsgTxt("Two input arguments required."); 
-    } else if (nlhs > 1) {
-      mexErrMsgTxt("Too many output arguments."); 
-    } 
-    
-    
-    /* Check the the input dimensions */ 
-    
-    m = mxGetM(X_IN);
-    n = mxGetN(X_IN);
-    if (!mxIsDouble(X_IN) || mxIsComplex(X_IN) || mxGetNumberOfDimensions(X_IN)>2) {
-      mexErrMsgTxt("ADDTOCOLS requires that X be a double matrix.");
-    }
-    m1 = mxGetM(V_IN);
-    n1 = mxGetN(V_IN);
-    if (!mxIsDouble(V_IN) || mxIsComplex(V_IN) || (m1!=1 && n1!=1)) {
-      mexErrMsgTxt("ADDTOCOLS requires that V be a double vector.");
-    }
-    if ((m1==1 && n1!=n) || (n1==1 && m1!=n)) {
-      mexErrMsgTxt("Error in ADDTOCOLS: dimensions of V and X must agree.");
-    }
-    
-    
-    /* Create a matrix for the return argument */ 
-    Y_OUT = mxCreateDoubleMatrix(m, n, mxREAL);
-         
-    
-    /* Assign pointers to the various parameters */ 
-    x = mxGetPr(X_IN); 
-    v = mxGetPr(V_IN);
-    y = mxGetPr(Y_OUT);
-            
-    
-    /* Do the actual computation */
-    
-    xend = x+(m*n);
-    counter = 0;
-    while (x<xend) {
-      (*y) = (*x) + (*v);
-      y++; x++; counter++;
-      if (counter==m) {v++; counter=0;}
-    }
-    
-    return;
-}
--- a/DL/RLS-DLA/private/addtocols.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,13 +0,0 @@
-%ADDTOCOLS Add values to the columns of a matrix.
-%  Y=ADDTOCOLS(X,V) adds to each column of the MxN matrix X the
-%  corresponding value from the N-element vector V.
-%
-%  See also NORMCOLS.
-
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  June 2005
Binary file DL/RLS-DLA/private/addtocols.mexa64 has changed
--- a/DL/RLS-DLA/private/col2imstep.c	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,146 +0,0 @@
-/**************************************************************************
- *
- * File name: col2imstep.c
- *
- * Ron Rubinstein
- * Computer Science Department
- * Technion, Haifa 32000 Israel
- * ronrubin@cs
- *
- * Last Updated: 31.8.2009
- *
- *************************************************************************/
-
-
-#include "mex.h"
-
-
-/* Input Arguments */
-
-#define	B_IN	 prhs[0]
-#define N_IN   prhs[1]
-#define SZ_IN  prhs[2]
-#define S_IN   prhs[3]
-
-
-/* Output Arguments */
-
-#define	X_OUT	plhs[0]
-
-
-void mexFunction(int nlhs, mxArray *plhs[], 
-		             int nrhs, const mxArray*prhs[])
-     
-{ 
-    double *x, *b, *s;
-    mwSize sz[3], stepsize[3], n[3], ndims;
-    mwIndex i, j, k, l, m, t, blocknum;
-    
-    
-    /* Check for proper number of arguments */
-    
-    if (nrhs < 3 || nrhs > 4) {
-      mexErrMsgTxt("Invalid number of input arguments."); 
-    } else if (nlhs > 1) {
-      mexErrMsgTxt("Too many output arguments."); 
-    } 
-    
-    
-    /* Check the the input dimensions */ 
-    
-    if (!mxIsDouble(B_IN) || mxIsComplex(B_IN) || mxGetNumberOfDimensions(B_IN)>2) {
-      mexErrMsgTxt("B should be a double matrix.");
-    }
-    if (!mxIsDouble(N_IN) || mxIsComplex(N_IN) || mxGetNumberOfDimensions(N_IN)>2) {
-      mexErrMsgTxt("Invalid output matrix size.");
-    }
-    ndims = mxGetM(N_IN)*mxGetN(N_IN);
-    if (ndims<2 || ndims>3) {
-      mexErrMsgTxt("Output matrix can only be 2-D or 3-D.");
-    }
-    if (!mxIsDouble(SZ_IN) || mxIsComplex(SZ_IN) || mxGetNumberOfDimensions(SZ_IN)>2 || mxGetM(SZ_IN)*mxGetN(SZ_IN)!=ndims) {
-      mexErrMsgTxt("Invalid block size.");
-    }
-    if (nrhs == 4) {
-      if (!mxIsDouble(S_IN) || mxIsComplex(S_IN) || mxGetNumberOfDimensions(S_IN)>2 || mxGetM(S_IN)*mxGetN(S_IN)!=ndims) {
-        mexErrMsgTxt("Invalid step size.");
-      }
-    }
-    
-    
-    /* Get parameters */
-    
-    s = mxGetPr(N_IN);
-    if (s[0]<1 || s[1]<1 || (ndims==3 && s[2]<1)) {
-      mexErrMsgTxt("Invalid output matrix size.");
-    }
-    n[0] = (mwSize)(s[0] + 0.01);
-    n[1] = (mwSize)(s[1] + 0.01);
-    n[2] = ndims==3 ? (mwSize)(s[2] + 0.01) : 1;
-    
-    s = mxGetPr(SZ_IN);
-    if (s[0]<1 || s[1]<1 || (ndims==3 && s[2]<1)) {
-      mexErrMsgTxt("Invalid block size.");
-    }
-    sz[0] = (mwSize)(s[0] + 0.01);
-    sz[1] = (mwSize)(s[1] + 0.01);
-    sz[2] = ndims==3 ? (mwSize)(s[2] + 0.01) : 1;
-    
-    if (nrhs == 4) {
-      s = mxGetPr(S_IN);
-      if (s[0]<1 || s[1]<1 || (ndims==3 && s[2]<1)) {
-        mexErrMsgTxt("Invalid step size.");
-      }
-      stepsize[0] = (mwSize)(s[0] + 0.01);
-      stepsize[1] = (mwSize)(s[1] + 0.01);
-      stepsize[2] = ndims==3 ? (mwSize)(s[2] + 0.01) : 1;
-    }
-    else {
-      stepsize[0] = stepsize[1] = stepsize[2] = 1;
-    }
-    
-    if (n[0]<sz[0] || n[1]<sz[1] || (ndims==3 && n[2]<sz[2])) {
-      mexErrMsgTxt("Block size too large.");
-    }
-
-    if (mxGetN(B_IN) != ((n[0]-sz[0])/stepsize[0]+1)*((n[1]-sz[1])/stepsize[1]+1)*((n[2]-sz[2])/stepsize[2]+1)) {
-      mexErrMsgTxt("Invalid number of columns in B. Please use IM2COLSTEP to compute B.");
-    }
-    
-    
-    /* Create a matrix for the return argument */
-    
-    X_OUT = mxCreateNumericArray(ndims, n, mxDOUBLE_CLASS, mxREAL);
-    
-    
-    /* Assign pointers */
-    
-    b = mxGetPr(B_IN);
-    x = mxGetPr(X_OUT);
-            
-    
-    /* Do the actual computation */
-    
-    blocknum = 0;
-    
-    /* iterate over all blocks */
-    for (k=0; k<=n[2]-sz[2]; k+=stepsize[2]) {
-      for (j=0; j<=n[1]-sz[1]; j+=stepsize[1]) {
-        for (i=0; i<=n[0]-sz[0]; i+=stepsize[0]) {
-          
-          /* add single block */
-          for (m=0; m<sz[2]; m++) {
-            for (l=0; l<sz[1]; l++) {
-              for (t=0; t<sz[0]; t++) {
-                (x+(k+m)*n[0]*n[1]+(j+l)*n[0]+i)[t] += (b + blocknum*sz[0]*sz[1]*sz[2] + m*sz[0]*sz[1] + l*sz[0])[t];
-              }
-            }
-          }
-          blocknum++;
-          
-        }
-      }
-    }
-    
-    return;
-}
--- a/DL/RLS-DLA/private/col2imstep.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,25 +0,0 @@
-%COL2IMSTEP Rearrange matrix columns into blocks.
-%  A = COL2IMSTEP(B,[MM NN],[N1 N2]) rearranges the columns of B into
-%  sliding N1-by-N2 blocks producing the matrix A of size MM-by-NN. B is
-%  usually the result of calling IM2COLSTEP(...) with a stepsize of 1, or
-%  using Matlab's IM2COL(..,'sliding'). Overlapping blocks are summed in A.
-%
-%  A = COL2IMSTEP(B,[MM NN],[N1 N2],[S1 S2]) arranges the blocks in A with
-%  a step size of (S1,S2) between them. The first block is at A(1:N1,1:N2),
-%  and the rest are at A((1:N1)+i*S1,(1:N2)+j*S2). Overlapping blocks are
-%  summed in A. Note that B is usually the result of calling
-%  IM2COLSTEP(...) with a stepsize of [S1 S2].
-%
-%  A = IM2COLSTEP(B,[MM NN KK],[N1 N2 N3],[S1 S2 S3]) generates a 3-D
-%  output matrix A. The step size [S1 S2 S3] may be ommitted, and defaults
-%  to [1 1 1].
-%
-%  See also IM2COLSTEP, IM2COL, COUNTCOVER.
-
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  August 2009
Binary file DL/RLS-DLA/private/col2imstep.mexa64 has changed
--- a/DL/RLS-DLA/private/collincomb.c	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,165 +0,0 @@
-/**************************************************************************
- *
- * File name: collincomb.c
- *
- * Ron Rubinstein
- * Computer Science Department
- * Technion, Haifa 32000 Israel
- * ronrubin@cs
- *
- * Last Updated: 21.5.2009
- *
- *************************************************************************/
-
-
-#include "mex.h"
-
-
-/* Input Arguments */
-
-#define	A_IN	   prhs[0]
-#define ROWS_IN  prhs[1]
-#define COLS_IN1 prhs[1]
-#define COLS_IN2 prhs[2]
-#define X_IN1    prhs[2]
-#define X_IN2    prhs[3]
-
-
-/* Output Arguments */
-
-#define	Y_OUT	plhs[0]
-
-
-void mexFunction(int nlhs, mxArray *plhs[],
-int nrhs, const mxArray*prhs[])
-
-{
-  double *A, *x, *y, *rows, *cols;
-  mwSize m,n,m1,n1,m2,n2,rownum,colnum;
-  mwIndex col_id,*row_ids,i,j;
-  int rownumspecified=0;
-  
-  
-  /* Check for proper number of arguments */
-  
-  if (nrhs!=3 && nrhs!=4) {
-    mexErrMsgTxt("Invalid number of arguments.");
-  } else if (nlhs > 1) {
-    mexErrMsgTxt("Too many output arguments.");
-  }
-  
-  
-  /* Check the input dimensions */
-  
-  m = mxGetM(A_IN);
-  n = mxGetN(A_IN);
-  if (!mxIsDouble(A_IN) || mxIsComplex(A_IN) || mxGetNumberOfDimensions(A_IN)>2) {
-    mexErrMsgTxt("COLLINCOMB requires that A be a double matrix.");
-  }
-  
-  if (nrhs==3) {
-    
-    m1 = mxGetM(COLS_IN1);
-    n1 = mxGetN(COLS_IN1);
-    if (!mxIsDouble(COLS_IN1) || mxIsComplex(COLS_IN1) || (m1!=1 && n1!=1)) {
-      mexErrMsgTxt("COLLINCOMB requires that COLS be an index vector of type double.");
-    }
-    colnum = (m1 > n1) ? m1 : n1;   /* the number of columns in the linear combination */
-    
-    m2 = mxGetM(X_IN1);
-    n2 = mxGetN(X_IN1);
-    if (!mxIsDouble(X_IN1) || mxIsComplex(X_IN1) || (m2!=1 && n2!=1)) {
-      mexErrMsgTxt("COLLINCOMB requires that X be a double vector.");
-    }
-    
-    if (m2!=colnum && n2!=colnum) {
-      mexErrMsgTxt("The length of X does not match the number of columns in COLS.");
-    }
-    
-    rows = 0;
-    Y_OUT = mxCreateDoubleMatrix(m, 1, mxREAL);
-    cols = mxGetPr(COLS_IN1);
-    x = mxGetPr(X_IN1);
-  }
-  else {
-    
-    m1 = mxGetM(ROWS_IN);
-    n1 = mxGetN(ROWS_IN);
-    if (!mxIsDouble(ROWS_IN) || mxIsComplex(ROWS_IN) || (m1!=1 && n1!=1)) {
-      mexErrMsgTxt("COLLINCOMB requires that ROWS be an index vector of type double.");
-    }
-    rownum = (m1 > n1) ? m1 : n1;   /* the number of rows in the linear combination */
-    rownumspecified = 1;
-    rows = mxGetPr(ROWS_IN);
-    
-    m1 = mxGetM(COLS_IN2);
-    n1 = mxGetN(COLS_IN2);
-    if (!mxIsDouble(COLS_IN2) || mxIsComplex(COLS_IN2) || (m1!=1 && n1!=1)) {
-      mexErrMsgTxt("COLLINCOMB requires that COLS be an index vector of type double.");
-    }
-    colnum = (m1 > n1) ? m1 : n1;   /* the number of columns in the linear combination */
-    
-    m2 = mxGetM(X_IN2);
-    n2 = mxGetN(X_IN2);
-    if (!mxIsDouble(X_IN2) || mxIsComplex(X_IN2) || (m2!=1 && n2!=1)) {
-      mexErrMsgTxt("COLLINCOMB requires that X be a double vector.");
-    }
-    
-    if (m2!=colnum && n2!=colnum) {
-      mexErrMsgTxt("The length of X does not match the number of columns in COLS.");
-    }
-    
-    Y_OUT = mxCreateDoubleMatrix(rownum, 1, mxREAL);
-    cols = mxGetPr(COLS_IN2);
-    x = mxGetPr(X_IN2);
-  }
-  
-  
-  /* Assign pointers to the various parameters */
-  A = mxGetPr(A_IN);
-  y = mxGetPr(Y_OUT);
-  
-  
-  if (rownumspecified) {
-    
-     /* check row indices */
-    
-    row_ids = (mwIndex*)mxMalloc(rownum*sizeof(mwIndex));
-    
-    for (i=0; i<rownum; ++i) {
-      row_ids[i] = (mwIndex)(rows[i]+0.1)-1;
-      if (row_ids[i]<0 || row_ids[i]>=m) {
-        mexErrMsgTxt("Row index in ROWS is out of range.");
-      }
-    }
-    
-    /* Do the actual computation */
-    for (i=0; i<colnum; ++i) {
-      col_id = (mwIndex)(cols[i]+0.1)-1;
-      if (col_id<0 || col_id>=n) {
-        mexErrMsgTxt("Column index in COLS is out of range.");
-      }
-      for (j=0; j<rownum; ++j) {
-        y[j] += A[m*col_id+row_ids[j]]*x[i];
-      }
-    }
-    
-    mxFree(row_ids);
-  }
-  
-  else {
-    
-    /* Do the actual computation */
-    for (i=0; i<colnum; ++i) {
-      col_id = (mwIndex)(cols[i]+0.1)-1;
-      if (col_id<0 || col_id>=n) {
-        mexErrMsgTxt("Column index in COLS is out of range.");
-      }
-      for (j=0; j<m; ++j) {
-        y[j] += A[m*col_id+j]*x[i];
-      }
-    }
-  }
-  
-  return;
-}
--- a/DL/RLS-DLA/private/collincomb.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,27 +0,0 @@
-%COLLINCOMB Linear combination of matrix columns.
-%  Y = COLLINCOMB(A,COLS,X) computes a linear combination of the columns of
-%  the matrix A. The column indices are specified in the vector COLS, and
-%  the correspoinding coefficients are specified in the vector X. The
-%  vectors COLS and X must be of the same length. 
-%  
-%  The call Y = COLLINCOMB(A,COLS,X) is essentially equivalent to
-%
-%         Y = A(:,COLS)*X .
-%
-%  However, it is implemented much more efficiently.
-%
-%  Y = COLLINCOMB(A,ROWS,COLS,X) only works on the rows of A specified
-%  in ROWS, returning a vector of length equal to ROWS. This call is
-%  essentially equivalent to the command
-%
-%         Y = A(ROWS,COLS)*X .
-%
-%  See also ROWLINCOMB.
-
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  April 2009
Binary file DL/RLS-DLA/private/collincomb.mexa64 has changed
--- a/DL/RLS-DLA/private/completeOps.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,78 +0,0 @@
-function data = completeOps(data)
-
-%   Copyright 2008, Ewout van den Berg and Michael P. Friedlander
-%   http://www.cs.ubc.ca/labs/scl/sparco
-%   $Id: completeOps.m 1040 2008-06-26 20:29:02Z ewout78 $
-
-operators = {};
-flagM = 0; if isfield(data,'M'), flagM = 1; end;
-flagB = 0; if isfield(data,'B'), flagB = 1; end;
-
-if (~flagM) && (~flagB)
-   error('At least one of the operators M or B has be to given.');
-end
-
-% Define measurement matrix if needed
-if ~flagM
-  info   = data.B([],0);
-  data.M = opDirac(info{1});
-else
-  operators{end+1} = data.M;
-end
-
-% Define sparsity basis if needed
-if ~flagB
-  info   = data.M([],0);
-  data.B = opDirac(info{2});
-else
-  operators{end+1} = data.B;
-end
-
-% Define operator A if needed
-if ~isfield(data,'A')
-  if (length(operators) > 1)
-     data.A = opFoG(operators{:});
-  else
-     data.A = operators{1};
-  end
-end
-
-% Define empty solution if needed
-if ~isfield(data,'x0')
-  data.x0 = [];
-end
-
-% Define the operator size and string
-opInfo       = data.A([],0);
-data.sizeA   = [opInfo{1},opInfo{2}];
-opInfo       = data.B([],0);
-data.sizeB   = [opInfo{1},opInfo{2}];
-opInfo       = data.M([],0);
-data.sizeM   = [opInfo{1},opInfo{2}];
-data.op.strA = opToString(data.A);
-data.op.strB = opToString(data.B);
-data.op.strM = opToString(data.M);
-
-% Get the size of the desired signal
-if ~isfield(data,'signalSize')
-   if ~isfield(data,'signal')
-     error(['At least one of the fields signal ', ...
-            'or signalSize must be given.']);
-   end
-   data.signalSize = size(data.signal);
-end
-
-% Reconstruct signal from sparse coefficients
-if ~isfield(data,'reconstruct')
-   data.reconstruct = @(x) reshape(data.B(x,1),data.signalSize);
-end
-
-% Reorder the fields (sort alphabetically)
-m = fieldnames(data);
-m = sort(m);
-dataReorder = struct();
-for i=1:length(m)
-  eval(sprintf('dataReorder.%s = data.%s;',m{i},m{i}));
-end
-
-data = dataReorder;
--- a/DL/RLS-DLA/private/countcover.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,33 +0,0 @@
-function cnt = countcover(sz,blocksize,stepsize)
-%COUNTCOVER Covering of signal samples by blocks
-%  CNT = COUNTCOVER(SZ,BLOCKSIZE,STEPSIZE) assumes a p-dimensional signal
-%  of size SZ=[N1 N2 ... Np] covered by (possibly overlapping) blocks of
-%  size BLOCKSIZE=[M1 M2 ... Mp]. The blocks start at position (1,1,..,1)
-%  and are shifted between them by steps of size STEPSIZE=[S1 S2 ... Sp].
-%  COUNTCOVER returns a matrix the same size as the signal, containing in
-%  each entry the number of blocks covering that sample.
-%
-%  See also IM2COLSTEP, COL2IMSTEP, IM2COL.
-
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  August 2008
-
-
-cnt = ones(sz);
-for k = 1:length(sz)
-  
-  % this code is modified from function NDGRID, so it computes one
-  % output argument of NDGRID at a time (to conserve memory)
-  ids = (1:sz(k))';
-  s = sz; s(k) = [];
-  ids = reshape(ids(:,ones(1,prod(s))),[length(ids) s]);
-  ids = permute(ids,[2:k 1 k+1:length(sz)]);
-  
-  cnt = cnt .* max( min(floor((ids-1)/stepsize(k)),floor((sz(k)-blocksize(k))/stepsize(k))) - ...
-                    max(ceil((ids-blocksize(k))/stepsize(k)),0) + 1 , 0 );
-end
--- a/DL/RLS-DLA/private/diag_ids.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,30 +0,0 @@
-function id = diag_ids(x,k)
-%DIAG_IDS Indices of matrix diagonal elements.
-%  ID = DIAG_IDS(X) returns the indices of the main diagonal of X.
-%
-%  ID = DIAG_IDS(X,K) returns the indices of the K-th diagonal. K=0
-%  represents the main diagonal, positive values are above the main
-%  diagonal and negative values are below the main diagonal.
-
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  September 2006
-
-
-if (nargin==1), k=0; end
-
-[m,n] = size(x);
-l = max(m,n);
-
-if (k<=0)
-  id = (0:l-1)*m + (1:l) - k;
-else
-  id = (0:l-1)*m + (1:l) + k*m;
-end
-
-if (l-k>m), id = id(1:end-(l-k-m)); end
-if (l+k>n), id = id(1:end-(l+k-n)); end
--- a/DL/RLS-DLA/private/dictdist.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,61 +0,0 @@
-function [dist,ratio] = dictdist(approxD,D,epsilon)
-%DICTDIST Distance between dictionaries.
-%  [DIST,RATIO] = DICTDIST(APPROXD,D) computes the distance between the
-%  approximate dictionary APPROXD and the true dictionary D, where APPROXD
-%  is NxK and D is NxM.
-%
-%  The distance between the dictionary APPROXD and a single atom A of D is
-%  defined as:
-%
-%      DIST(APPROXD,A) = min  { 1-abs(APPROXD(:,i)' * A) }
-%                         i
-%
-%  The distance between the dictionaries APPROXD and D is defined as:
-%
-%      DIST(APPROXD,D) = sum { dist(APPROXD, D(:,k)) } / M
-%                         k
-%
-%  Note that 0 <= DIST(APPROXD,D) <= 1, where 0 implies that all atoms in D
-%  appear in APPROXD, and 1 implies that the atoms of D are orthogonal to
-%  APPROXD.
-%
-%  The similarity ratio between APPROXD and D is defined as:
-%
-%      RATIO(APPROXD,D) = #(atoms in D that appear in APPROXD) / M
-%
-%  where two atoms are considered identical when DIST(A1,A2) < EPSILON with
-%  EPSILON=0.01 by default. Note that 0 <= RATIO(APPROXD,D) <= 1, where 0
-%  means APPROXD and D have no identical atoms, and 1 means that all atoms
-%  of D appear in APPROXD.
-%
-%  [DIST,RATIO] = DICTDIST(DICT1,DICT2,EPSILON) specifies a different value
-%  for EPSILON.
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  October 2007
-
-
-if (nargin < 3), epsilon = 0.01; end
-
-[n,m] = size(D);
-
-approxD = normcols(approxD*spdiag(sign(approxD(1,:))));
-D = normcols(D*spdiag(sign(D(1,:))));
-
-identical_atoms = 0;
-dist = 0;
-
-for i = 1:m
-  atom = D(:,i);
-  distances = 1-abs(atom'*approxD);
-  mindist = min(distances);
-  dist = dist + mindist;
-  identical_atoms = identical_atoms + (mindist < epsilon);
-end
-
-dist = dist / m;
-ratio = identical_atoms / m;
--- a/DL/RLS-DLA/private/genPDF.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,113 +0,0 @@
-function [pdf,val] = genPDF(imSize,p,pctg,distType,radius,disp)
-
-%[pdf,val] = genPDF(imSize,p,pctg [,distType,radius,disp])
-%
-%	generates a pdf for a 1d or 2d random sampling pattern
-%	with polynomial variable density sampling
-%
-%	Input:
-%		imSize - size of matrix or vector
-%		p - power of polynomial
-%		pctg - partial sampling factor e.g. 0.5 for half
-%		distType - 1 or 2 for L1 or L2 distance measure
-%		radius - radius of fully sampled center
-%		disp - display output
-%
-%	Output:
-%		pdf - the pdf
-%		val - min sampling density
-%
-% 
-%	Example:
-%	[pdf,val] = genPDF([128,128],2,0.5,2,0,1);
-%
-%	(c) Michael Lustig 2007
-
-%   This file is used with the kind permission of Michael Lustig
-%   (mlustig@stanford.edu), and originally appeared in the
-%   SparseMRI toolbox, http://www.stanford.edu/~mlustig/ .
-%
-% $Id: genPDF.m 1040 2008-06-26 20:29:02Z ewout78 $
-
-
-if nargin < 4
-	distType = 2;
-end
-
-if nargin < 5
-	radius = 0;
-end
-
-if nargin < 6
-	disp = 0;
-end
-
-
-minval=0;
-maxval=1;
-val = 0.5;
-
-if length(imSize)==1
-	imSize = [imSize,1];
-end
-
-sx = imSize(1);
-sy = imSize(2);
-PCTG = floor(pctg*sx*sy);
-
-
-if sum(imSize==1)==0  % 2D
-	[x,y] = meshgrid(linspace(-1,1,sy),linspace(-1,1,sx));
-	switch distType
-		case 1
-			r = max(abs(x),abs(y));
-		otherwise
-			r = sqrt(x.^2+y.^2);
-			r = r/max(abs(r(:)));			
-	end
-
-else %1d
-	r = abs(linspace(-1,1,max(sx,sy)));
-end
-
-
-
-
-idx = find(r<radius);
-
-pdf = (1-r).^p; pdf(idx) = 1;
-if floor(sum(pdf(:))) > PCTG
-	error('infeasible without undersampling dc, increase p');
-end
-
-% begin bisection
-while(1)
-	val = minval/2 + maxval/2;
-	pdf = (1-r).^p + val; pdf(find(pdf>1)) = 1; pdf(idx)=1;
-	N = floor(sum(pdf(:)));
-	if N > PCTG % infeasible
-		maxval=val;
-	end
-	if N < PCTG % feasible, but not optimal
-		minval=val;
-	end
-	if N==PCTG % optimal
-		break;
-	end
-end
-
-if disp
-	figure, 
-	subplot(211), imshow(pdf)
-	if sum(imSize==1)==0
-		subplot(212), plot(pdf(end/2+1,:));
-	else
-		subplot(212), plot(pdf);
-	end
-end
-
-
-
-
-
-
--- a/DL/RLS-DLA/private/genSampling.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,53 +0,0 @@
-function [minIntrVec,stat,actpctg] = genSampling(pdf,iter,tol)
-
-%[mask,stat,N] = genSampling(pdf,iter,tol)
-%
-% a monte-carlo algorithm to generate a sampling pattern with 
-% minimum peak interference. The number of samples will be
-% sum(pdf) +- tol
-%
-%	pdf - probability density function to choose samples from
-%	iter - number of tries
-%	tol  - the deviation from the desired number of samples in samples
-%
-% returns:
-%	mask - sampling pattern
-%	stat - vector of min interferences measured each try
-%	actpctg    - actual undersampling factor
-%
-%	(c) Michael Lustig 2007
-
-%   This file is used with the kind permission of Michael Lustig
-%   (mlustig@stanford.edu), and originally appeared in the
-%   SparseMRI toolbox, http://www.stanford.edu/~mlustig/ .
-%
-% $Id: genSampling.m 1040 2008-06-26 20:29:02Z ewout78 $
-
-% h = waitbar(0);
-
-pdf(find(pdf>1)) = 1;
-K = sum(pdf(:));
-
-minIntr = 1e99;
-minIntrVec = zeros(size(pdf));
-
-for n=1:iter
-	tmp = zeros(size(pdf));
-	while abs(sum(tmp(:)) - K) > tol
-		tmp = rand(size(pdf))<pdf;
-	end
-	
-	TMP = ifft2(tmp./pdf);
-	if max(abs(TMP(2:end))) < minIntr
-		minIntr = max(abs(TMP(2:end)));
-		minIntrVec = tmp;
-	end
-	stat(n) = max(abs(TMP(2:end)));
-      % waitbar(n/iter,h);
-end
-
-actpctg = sum(minIntrVec(:))/prod(size(minIntrVec));
-
-% close(h);
-
-
--- a/DL/RLS-DLA/private/im2colstep.c	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,131 +0,0 @@
-/**************************************************************************
- *
- * File name: im2colstep.c
- *
- * Ron Rubinstein
- * Computer Science Department
- * Technion, Haifa 32000 Israel
- * ronrubin@cs
- *
- * Last Updated: 31.8.2009
- *
- *************************************************************************/
-
-
-#include "mex.h"
-#include <string.h>
-
-
-/* Input Arguments */
-
-#define	X_IN	 prhs[0]
-#define SZ_IN  prhs[1]
-#define S_IN   prhs[2]
-
-
-/* Output Arguments */
-
-#define	B_OUT	plhs[0]
-
-
-void mexFunction(int nlhs, mxArray *plhs[], 
-		             int nrhs, const mxArray*prhs[])
-     
-{ 
-    double *x, *b, *s;
-    mwSize sz[3], stepsize[3], n[3], ndims;
-    mwIndex i, j, k, l, m, blocknum;
-    
-    
-    /* Check for proper number of arguments */
-    
-    if (nrhs < 2 || nrhs > 3) {
-      mexErrMsgTxt("Invalid number of input arguments."); 
-    } else if (nlhs > 1) {
-      mexErrMsgTxt("Too many output arguments."); 
-    } 
-    
-    
-    /* Check the the input dimensions */ 
-    
-    ndims = mxGetNumberOfDimensions(X_IN);
-    
-    if (!mxIsDouble(X_IN) || mxIsComplex(X_IN) || ndims>3) {
-      mexErrMsgTxt("X should be a 2-D or 3-D double matrix.");
-    }
-    if (!mxIsDouble(SZ_IN) || mxIsComplex(SZ_IN) || mxGetNumberOfDimensions(SZ_IN)>2 || mxGetM(SZ_IN)*mxGetN(SZ_IN)!=ndims) {
-      mexErrMsgTxt("Invalid block size.");
-    }
-    if (nrhs == 3) {
-      if (!mxIsDouble(S_IN) || mxIsComplex(S_IN) || mxGetNumberOfDimensions(S_IN)>2 || mxGetM(S_IN)*mxGetN(S_IN)!=ndims) {
-        mexErrMsgTxt("Invalid step size.");
-      }
-    }
-    
-    
-    /* Get parameters */
-    
-    s = mxGetPr(SZ_IN);
-    if (s[0]<1 || s[1]<1 || (ndims==3 && s[2]<1)) {
-      mexErrMsgTxt("Invalid block size.");
-    }
-    sz[0] = (mwSize)(s[0] + 0.01);
-    sz[1] = (mwSize)(s[1] + 0.01);
-    sz[2] = ndims==3 ? (mwSize)(s[2] + 0.01) : 1;
-    
-    if (nrhs == 3) {
-      s = mxGetPr(S_IN);
-      if (s[0]<1 || s[1]<1 || (ndims==3 && s[2]<1)) {
-        mexErrMsgTxt("Invalid step size.");
-      }
-      stepsize[0] = (mwSize)(s[0] + 0.01);
-      stepsize[1] = (mwSize)(s[1] + 0.01);
-      stepsize[2] = ndims==3 ? (mwSize)(s[2] + 0.01) : 1;
-    }
-    else {
-      stepsize[0] = stepsize[1] = stepsize[2] = 1;
-    }
-    
-    n[0] = (mxGetDimensions(X_IN))[0];
-    n[1] = (mxGetDimensions(X_IN))[1];
-    n[2] = ndims==3 ? (mxGetDimensions(X_IN))[2] : 1;
-    
-    if (n[0]<sz[0] || n[1]<sz[1] || (ndims==3 && n[2]<sz[2])) {
-      mexErrMsgTxt("Block size too large.");
-    }
-    
-    
-    /* Create a matrix for the return argument */
-    
-    B_OUT = mxCreateDoubleMatrix(sz[0]*sz[1]*sz[2], ((n[0]-sz[0])/stepsize[0]+1)*((n[1]-sz[1])/stepsize[1]+1)*((n[2]-sz[2])/stepsize[2]+1), mxREAL);
-    
-    
-    /* Assign pointers */
-    
-    x = mxGetPr(X_IN);
-    b = mxGetPr(B_OUT);
-            
-    
-    /* Do the actual computation */
-    
-    blocknum = 0;
-    
-    /* iterate over all blocks */
-    for (k=0; k<=n[2]-sz[2]; k+=stepsize[2]) {
-      for (j=0; j<=n[1]-sz[1]; j+=stepsize[1]) {
-        for (i=0; i<=n[0]-sz[0]; i+=stepsize[0]) {
-          
-          /* copy single block */
-          for (m=0; m<sz[2]; m++) {
-            for (l=0; l<sz[1]; l++) {
-              memcpy(b + blocknum*sz[0]*sz[1]*sz[2] + m*sz[0]*sz[1] + l*sz[0], x+(k+m)*n[0]*n[1]+(j+l)*n[0]+i, sz[0]*sizeof(double));
-            }
-          }
-          blocknum++;
-          
-        }
-      }
-    }
-    
-    return;
-}
--- a/DL/RLS-DLA/private/im2colstep.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,31 +0,0 @@
-%IM2COLSTEP Rearrange matrix blocks into columns.
-%  B = IM2COLSTEP(A,[N1 N2]) converts each sliding N1-by-N2 block of the
-%  2-D matrix A into a column of B, with no zero padding. B has N1*N2 rows
-%  and will contain as many columns as there are N1-by-N2 neighborhoods in
-%  A. Each column of B contains a neighborhood of A reshaped as NHOOD(:),
-%  where NHOOD is a matrix containing an N1-by-N2 neighborhood of A.
-%
-%  B = IM2COLSTEP(A,[N1 N2],[S1 S2]) extracts neighborhoods of A with a
-%  step size of (S1,S2) between them. The first extracted neighborhood is
-%  A(1:N1,1:N2), and the rest are of the form A((1:N1)+i*S1,(1:N2)+j*S2).
-%  Note that to ensure coverage of all A by neighborhoods,
-%  (size(A,i)-Ni)/Si must be whole for i=1,2. The default function behavior
-%  corresponds to [S1 S2] = [1 1]. Setting S1>=N1 and S2>=N2 results in no
-%  overlap between the neighborhoods.
-%
-%  B = IM2COLSTEP(A,[N1 N2 N3],[S1 S2 S3]) operates on a 3-D matrix A. The
-%  step size [S1 S2 S3] may be ommitted, and defaults to [1 1 1].
-%
-%  Note: the call IM2COLSTEP(A,[N1 N2]) produces the same output as
-%  Matlab's IM2COL(A,[N1 N2],'sliding'). However, it is significantly
-%  faster.
-%
-%  See also COL2IMSTEP, IM2COL, COUNTCOVER.
-
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  August 2009
Binary file DL/RLS-DLA/private/im2colstep.mexa64 has changed
--- a/DL/RLS-DLA/private/imnormalize.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,19 +0,0 @@
-function y = imnormalize(x)
-%IMNORMALIZE Normalize image values.
-%  Y = IMNORMALIZE(X) linearly transforms the intensity values of the image
-%  X to tightly cover the range [0,1]. If X has more than one channel, the
-%  channels are handled as one and normalized using the same transform.
-
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  May 2004
-
-
-maxval = max(x(:));
-minval = min(x(:));
-
-y = (x-minval) / (maxval-minval);
--- a/DL/RLS-DLA/private/iswhole.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,17 +0,0 @@
-function z = iswhole(x,epsilon)
-%ISWHOLE Determine whole numbers with finite precision.
-%  Z = ISWHOLE(X,EPSILON) returns a matrix the same size as X, containing
-%  1's where X is whole up to precision EPSILON, and 0's elsewhere. 
-%
-%  Z = ISWHOLE(X) uses the default value of EPSILON=1e-6.
-
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  May 2005
-
-if (nargin<2), epsilon = 1e-6; end
-z = abs(round(x)-x) < epsilon;
--- a/DL/RLS-DLA/private/make.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,40 +0,0 @@
-function make
-%MAKE Build the KSVDBox MEX support files.
-%  MAKE compiles the KSVDBox supporting MEX functions, using Matlab's
-%  default MEX compiler. If the MEX compiler has not been set-up before,
-%  please run 
-%
-%    mex -setup
-%
-%  before using this MAKE file.
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  August 2009
-
-
-% detect platform 
-
-compstr = computer;
-is64bit = strcmp(compstr(end-1:end),'64');
-
-
-% compilation parameters
-
-compile_params = cell(0);
-if (is64bit)
-  compile_params{1} = '-largeArrayDims';
-end
-
-
-% Compile files %
-
-sourcefiles = {{'addtocols.c'}, {'collincomb.c'}, {'rowlincomb.c'}, {'sprow.c','mexutils.c'}, {'im2colstep.c'}, {'col2imstep.c'}};
-
-for i = 1:length(sourcefiles)
-  printf('Compiling %s...', sourcefiles{i}{1});
-  mex(sourcefiles{i}{:},compile_params{:});
-end
--- a/DL/RLS-DLA/private/mexutils.c	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,79 +0,0 @@
-/**************************************************************************
- *
- * File name: mexutils.c
- *
- * Ron Rubinstein
- * Computer Science Department
- * Technion, Haifa 32000 Israel
- * ronrubin@cs
- *
- * Last Updated: 15.8.2009
- *
- *************************************************************************/
-
-#include "mexutils.h"
-#include <math.h>
-
-
-
-/* verify that the mxArray contains a double matrix */
-
-void checkmatrix(const mxArray *param, char *fname, char *pname)
-{
-  char errmsg[100];
-  sprintf(errmsg, "%.15s requires that %.25s be a double matrix.", fname, pname);
-  if (!mxIsDouble(param) || mxIsComplex(param) || mxGetNumberOfDimensions(param)>2) {
-    mexErrMsgTxt(errmsg);
-  }
-}
-
-
-/* verify that the mxArray contains a 1-D double vector */
-
-void checkvector(const mxArray *param, char *fname, char *pname)
-{
-  char errmsg[100];
-  sprintf(errmsg, "%.15s requires that %.25s be a double vector.", fname, pname);
-  if (!mxIsDouble(param) || mxIsComplex(param) || mxGetNumberOfDimensions(param)>2 || (mxGetM(param)!=1 && mxGetN(param)!=1)) {
-    mexErrMsgTxt(errmsg);
-  }
-}
-
-
-/* verify that the mxArray contains a double scalar */
-
-void checkscalar(const mxArray *param, char *fname, char *pname)
-{
-  char errmsg[100];
-  sprintf(errmsg, "%.15s requires that %.25s be a double scalar.", fname, pname);
-  if (!mxIsDouble(param) || mxIsComplex(param) || mxGetNumberOfDimensions(param)>2 || 
-      mxGetM(param)!=1 || mxGetN(param)!=1) 
-  {
-    mexErrMsgTxt(errmsg);
-  }
-}
-
-
-/* verify that the mxArray contains a sparse matrix */
-
-void checksparse(const mxArray *param, char *fname, char *pname)
-{
-  char errmsg[100];
-  sprintf(errmsg, "%.15s requires that %.25s be sparse.", fname, pname);
-  if (!mxIsSparse(param)) {
-    mexErrMsgTxt(errmsg);
-  }
-}
-
-
-/* verify that the mxArray contains a 1-dimensional cell array */
-
-void checkcell_1d(const mxArray *param, char *fname, char *pname)
-{
-  char errmsg[100];
-  sprintf(errmsg, "%.15s requires that %.25s be a 1-D cell array.", fname, pname);
-  if (!mxIsCell(param) || mxGetNumberOfDimensions(param)>2 || (mxGetM(param)!=1 && mxGetN(param)!=1)) {
-    mexErrMsgTxt(errmsg);
-  }
-}
-
--- a/DL/RLS-DLA/private/mexutils.h	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,103 +0,0 @@
-/**************************************************************************
- *
- * File name: mexutils.h
- *
- * Ron Rubinstein
- * Computer Science Department
- * Technion, Haifa 32000 Israel
- * ronrubin@cs
- *
- * Last Updated: 18.8.2009
- *
- * Utility functions for MEX files.
- *
- *************************************************************************/
-
-
-#ifndef __MEX_UTILS_H__
-#define __MEX_UTILS_H__
-
-#include "mex.h"
-
-
-
-/**************************************************************************
- * Function checkmatrix:
- *
- * Verify that the specified mxArray is real, of type double, and has 
- * no more than two dimensions. If not, an error message is printed
- * and the mex file terminates.
- * 
- * Parameters:
- *   param - the mxArray to be checked
- *   fname - the name of the function where the error occured (15 characters or less)
- *   pname - the name of the parameter (25 characters or less)
- *
- **************************************************************************/
-void checkmatrix(const mxArray *param, char *fname, char *pname);
-
-
-/**************************************************************************
- * Function checkvector:
- *
- * Verify that the specified mxArray is 1-D, real, and of type double. The
- * vector may be a column or row vector. Otherwise, an error message is
- * printed and the mex file terminates.
- * 
- * Parameters:
- *   param - the mxArray to be checked
- *   fname - the name of the function where the error occured (15 characters or less)
- *   pname - the name of the parameter (25 characters or less)
- *
- **************************************************************************/
-void checkvector(const mxArray *param, char *fname, char *pname);
-
-
-/**************************************************************************
- * Function checkscalar:
- *
- * Verify that the specified mxArray represents a real double scalar value. 
- * If not, an error message is printed and the mex file terminates.
- * 
- * Parameters:
- *   param - the mxArray to be checked
- *   fname - the name of the function where the error occured (15 characters or less)
- *   pname - the name of the parameter (25 characters or less)
- *
- **************************************************************************/
-void checkscalar(const mxArray *param, char *fname, char *pname);
-
-
-/**************************************************************************
- * Function checksparse:
- *
- * Verify that the specified mxArray contains a sparse matrix. If not,
- * an error message is printed and the mex file terminates.
- * 
- * Parameters:
- *   param - the mxArray to be checked
- *   fname - the name of the function where the error occured (15 characters or less)
- *   pname - the name of the parameter (25 characters or less)
- *
- **************************************************************************/
-void checksparse(const mxArray *param, char *fname, char *pname);
-
-
-/**************************************************************************
- * Function checkcell_1d:
- *
- * Verify that the specified mxArray is a 1-D cell array. The cell array 
- * may be arranged as either a column or a row. If not, an error message 
- * is printed and the mex file terminates.
- * 
- * Parameters:
- *   param - the mxArray to be checked
- *   fname - the name of the function where the error occured (15 characters or less)
- *   pname - the name of the parameter (25 characters or less)
- *
- **************************************************************************/
-void checkcell_1d(const mxArray *param, char *fname, char *pname);
-
-
-#endif
-
--- a/DL/RLS-DLA/private/myblas.c	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,663 +0,0 @@
-/**************************************************************************
- *
- * File name: myblas.c
- *
- * Ron Rubinstein
- * Computer Science Department
- * Technion, Haifa 32000 Israel
- * ronrubin@cs
- *
- * Version: 1.1
- * Last updated: 13.8.2009
- *
- *************************************************************************/
-
-
-#include "myblas.h"
-#include <ctype.h>
-
-
-/* find maximum of absolute values */
-
-mwIndex maxabs(double c[], mwSize m)
-{
-  mwIndex maxid=0, k;
-  double absval, maxval = SQR(*c);   /* use square which is quicker than absolute value */
-
-  for (k=1; k<m; ++k) {
-    absval = SQR(c[k]);
-    if (absval > maxval) {
-      maxval = absval;
-      maxid = k;
-    }
-  }
-  return maxid;
-}
-
-
-/* compute y := alpha*x + y */
-
-void vec_sum(double alpha, double x[], double y[], mwSize n)
-{
-  mwIndex i;
-
-  for (i=0; i<n; ++i) {
-    y[i] += alpha*x[i];
-  }
-}
-
-
-/* compute y := alpha*A*x */
-
-void mat_vec(double alpha, double A[], double x[], double y[], mwSize n, mwSize m)
-{
-  mwIndex i, j, i_n;
-  double *Ax;
-
-  Ax = mxCalloc(n,sizeof(double));
-
-  for (i=0; i<m; ++i) {
-    i_n = i*n;
-    for (j=0; j<n; ++j) {
-      Ax[j] += A[i_n+j] * x[i];
-    }
-  }
-
-  for (j=0; j<n; ++j) {
-    y[j] = alpha*Ax[j];
-  }
-
-  mxFree(Ax);
-}
-
-
-/* compute y := alpha*A'*x */
-
-void matT_vec(double alpha, double A[], double x[], double y[], mwSize n, mwSize m)
-{
-  mwIndex i, j, n_i;
-  double sum0, sum1, sum2, sum3;
-
-  for (j=0; j<m; ++j) {
-    y[j] = 0;
-  }
-
-  /* use loop unrolling to accelerate computation */
-
-  for (i=0; i<m; ++i) {
-    n_i = n*i;
-    sum0 = sum1 = sum2 = sum3 = 0;
-    for (j=0; j+4<n; j+=4) {
-      sum0 += A[n_i+j]*x[j];
-      sum1 += A[n_i+j+1]*x[j+1];
-      sum2 += A[n_i+j+2]*x[j+2];
-      sum3 += A[n_i+j+3]*x[j+3];
-    }
-    y[i] += alpha * ((sum0 + sum1) + (sum2 + sum3));
-    while (j<n) {
-      y[i] += alpha*A[n_i+j]*x[j];
-      j++;
-    }
-  }
-}
-
-
-/* compute y := alpha*A*x */
-
-void mat_sp_vec(double alpha, double pr[], mwIndex ir[], mwIndex jc[], double x[], double y[], mwSize n, mwSize m)
-{
-  
-  mwIndex i, j, j1, j2;
-
-  for (i=0; i<n; ++i) {
-    y[i] = 0;
-  }
-  
-  j2 = jc[0];
-  for (i=0; i<m; ++i) {
-    j1 = j2; j2 = jc[i+1];
-    for (j=j1; j<j2; ++j) {
-      y[ir[j]] += alpha * pr[j] * x[i];
-    }
-  }
-  
-}
-
-
-/* compute y := alpha*A'*x */
-
-void matT_sp_vec(double alpha, double pr[], mwIndex ir[], mwIndex jc[], double x[], double y[], mwSize n, mwSize m)
-{
-  
-  mwIndex i, j, j1, j2;
-  
-  for (i=0; i<m; ++i) {
-    y[i] = 0;
-  }
-  
-  j2 = jc[0];
-  for (i=0; i<m; ++i) {
-    j1 = j2; j2 = jc[i+1];
-    for (j=j1; j<j2; ++j) {
-      y[i] += alpha * pr[j] * x[ir[j]];
-    }
-  }
-  
-}
-
-
-/* compute y := alpha*A*x */
-
-void mat_vec_sp(double alpha, double A[], double pr[], mwIndex ir[], mwIndex jc[], double y[], mwSize n, mwSize m)
-{
-  
-  mwIndex i, j, j_n, k, kend;
-  
-  for (i=0; i<n; ++i) {
-    y[i] = 0;
-  }
-  
-  kend = jc[1];
-  if (kend==0) {   /* x is empty */
-    return;
-  }
-  
-  for (k=0; k<kend; ++k) {
-    j = ir[k];
-    j_n = j*n;
-    for (i=0; i<n; ++i) {
-      y[i] += alpha * A[i+j_n] * pr[k];
-    }
-  }
-
-}
-
-
-/* compute y := alpha*A'*x */
-
-void matT_vec_sp(double alpha, double A[], double pr[], mwIndex ir[], mwIndex jc[], double y[], mwSize n, mwSize m)
-{
-  
-  mwIndex i, j, j_n, k, kend;
-  
-  for (i=0; i<m; ++i) {
-    y[i] = 0;
-  }
-  
-  kend = jc[1];
-  if (kend==0) {   /* x is empty */
-    return;
-  }
-  
-  for (j=0; j<m; ++j) {
-    j_n = j*n;
-    for (k=0; k<kend; ++k) {
-      i = ir[k];
-      y[j] += alpha * A[i+j_n] * pr[k];
-    }
-  }
-  
-}
-
-
-/* compute y := alpha*A*x */
-
-void mat_sp_vec_sp(double alpha, double pr[], mwIndex ir[], mwIndex jc[], double prx[], mwIndex irx[], mwIndex jcx[], double y[], mwSize n, mwSize m)
-{
-  
-  mwIndex i, j, k, kend, j1, j2;
-
-  for (i=0; i<n; ++i) {
-    y[i] = 0;
-  }
-  
-  kend = jcx[1]; 
-  if (kend==0) {   /* x is empty */
-    return;
-  }
-  
-  for (k=0; k<kend; ++k) {
-    i = irx[k];
-    j1 = jc[i]; j2 = jc[i+1];
-    for (j=j1; j<j2; ++j) {
-      y[ir[j]] += alpha * pr[j] * prx[k];
-    }
-  }
-  
-}
-
-
-/* compute y := alpha*A'*x */
-
-void matT_sp_vec_sp(double alpha, double pr[], mwIndex ir[], mwIndex jc[], double prx[], mwIndex irx[], mwIndex jcx[], double y[], mwSize n, mwSize m)
-{
-  
-  mwIndex i, j, k, jend, kend, jadd, kadd, delta;
-  
-  for (i=0; i<m; ++i) {
-    y[i] = 0;
-  }
-  
-  kend = jcx[1];
-  if (kend==0) {   /* x is empty */
-    return;
-  }
-  
-  for (i=0; i<m; ++i) {
-    j = jc[i]; 
-    jend = jc[i+1];
-    k = 0;
-    while (j<jend && k<kend) {
-      
-      delta = ir[j] - irx[k];
-      
-      if (delta) { /* if indices differ - increment the smaller one */
-        jadd = delta<0;
-        kadd = 1-jadd;
-        j += jadd;
-        k += kadd;
-      }
-      
-      else {    /* indices are equal - add to result and increment both */
-        y[i] += alpha * pr[j] * prx[k];
-        j++; k++;
-      }
-    }
-  }
-  
-}
-
-
-/* matrix-matrix multiplication */
-
-void mat_mat(double alpha, double A[], double B[], double X[], mwSize n, mwSize m, mwSize k)
-{
-  mwIndex i1, i2, i3, iX, iA, i2_n;
-  double b;
-  
-  for (i1=0; i1<n*k; i1++) {
-    X[i1] = 0;
-  }
-
-  for (i2=0; i2<m; ++i2) {
-    i2_n = i2*n;
-    iX = 0;
-    for (i3=0; i3<k; ++i3) {
-      iA = i2_n;
-      b = B[i2+i3*m];
-      for (i1=0; i1<n; ++i1) {
-        X[iX++] += A[iA++]*b;
-      }
-    }
-  }
-  
-  for (i1=0; i1<n*k; i1++) {
-    X[i1] *= alpha;
-  }
-}
-
-
-/* matrix-transpose-matrix multiplication */
-
-void matT_mat(double alpha, double A[], double B[], double X[], mwSize n, mwSize m, mwSize k)
-{
-  mwIndex i1, i2, i3, iX, iA, i2_n;
-  double *x, sum0, sum1, sum2, sum3;
-
-  for (i2=0; i2<m; ++i2) {
-    for (i3=0; i3<k; ++i3) {
-      sum0 = sum1 = sum2 = sum3 = 0;
-      for (i1=0; i1+4<n; i1+=4) {
-        sum0 += A[i1+0+i2*n]*B[i1+0+i3*n];
-        sum1 += A[i1+1+i2*n]*B[i1+1+i3*n];
-        sum2 += A[i1+2+i2*n]*B[i1+2+i3*n];
-        sum3 += A[i1+3+i2*n]*B[i1+3+i3*n];
-      }
-      X[i2+i3*m] = (sum0+sum1) + (sum2+sum3);
-      while(i1<n) {
-        X[i2+i3*m] += A[i1+i2*n]*B[i1+i3*n];
-        i1++;
-      }
-    }
-  }
-  
-  for (i1=0; i1<m*k; i1++) {
-    X[i1] *= alpha;
-  }
-}
-
-
-/* tensor-matrix product */
-
-void tens_mat(double alpha, double A[], double B[], double X[], mwSize n, mwSize m, mwSize k, mwSize l)
-{
-  mwIndex i1, i2, i3, i4, i2_n, nml;
-  double b;
-  
-  nml = n*m*l;
-  for (i1=0; i1<nml; ++i1) {
-    X[i1] = 0;
-  }
-
-  for (i2=0; i2<m; ++i2) {
-    i2_n = i2*n;
-    for (i3=0; i3<k; ++i3) {
-      for (i4=0; i4<l; ++i4) {
-        b = B[i4+i3*l];
-        for (i1=0; i1<n; ++i1) {
-          X[i1 + i2_n + i4*n*m] += A[i1 + i2_n + i3*n*m] * b;
-        }
-      }
-    }
-  }
-  
-  for (i1=0; i1<nml; ++i1) {
-    X[i1] *= alpha;
-  }
-}
-
-
-/* tensor-matrix-transpose product */
-
-void tens_matT(double alpha, double A[], double B[], double X[], mwSize n, mwSize m, mwSize k, mwSize l)
-{
-  mwIndex i1, i2, i3, i4, i2_n, nml;
-  double b;
-  
-  nml = n*m*l;
-  for (i1=0; i1<nml; ++i1) {
-    X[i1] = 0;
-  }
-
-  for (i2=0; i2<m; ++i2) {
-    i2_n = i2*n;
-    for (i4=0; i4<l; ++i4) {
-      for (i3=0; i3<k; ++i3) {
-        b = B[i3+i4*k];
-        for (i1=0; i1<n; ++i1) {
-          X[i1 + i2_n + i4*n*m] += A[i1 + i2_n + i3*n*m] * b;
-        }
-      }
-    }
-  }
-  
-  for (i1=0; i1<nml; ++i1) {
-    X[i1] *= alpha;
-  }
-}
-
-
-/* dot product */
-
-double dotprod(double a[], double b[], mwSize n)
-{
-  double sum = 0;
-  mwIndex i;
-  for (i=0; i<n; ++i)
-    sum += a[i]*b[i];
-  return sum;
-}
-
-
-/* find maximum of vector */
-
-mwIndex maxpos(double c[], mwSize m)
-{
-  mwIndex maxid=0, k;
-  double val, maxval = *c;
-
-  for (k=1; k<m; ++k) {
-    val = c[k];
-    if (val > maxval) {
-      maxval = val;
-      maxid = k;
-    }
-  }
-  return maxid;
-}
-
-
-/* solve L*x = b */
-
-void backsubst_L(double L[], double b[], double x[], mwSize n, mwSize k)
-{
-  mwIndex i, j;
-  double rhs;
-
-  for (i=0; i<k; ++i) {
-    rhs = b[i];
-    for (j=0; j<i; ++j) {
-      rhs -= L[j*n+i]*x[j];
-    }
-    x[i] = rhs/L[i*n+i];
-  }
-}
-
-
-/* solve L'*x = b */
-
-void backsubst_Lt(double L[], double b[], double x[], mwSize n, mwSize k)
-{
-  mwIndex i, j;
-  double rhs;
-
-  for (i=k; i>=1; --i) {
-    rhs = b[i-1];
-    for (j=i; j<k; ++j) {
-      rhs -= L[(i-1)*n+j]*x[j];
-    }
-    x[i-1] = rhs/L[(i-1)*n+i-1];
-  }
-}
-
-
-/* solve U*x = b */
-
-void backsubst_U(double U[], double b[], double x[], mwSize n, mwSize k)
-{
-  mwIndex i, j;
-  double rhs;
-
-  for (i=k; i>=1; --i) {
-    rhs = b[i-1];
-    for (j=i; j<k; ++j) {
-      rhs -= U[j*n+i-1]*x[j];
-    }
-    x[i-1] = rhs/U[(i-1)*n+i-1];
-  }
-}
-
-
-/* solve U'*x = b */
-
-void backsubst_Ut(double U[], double b[], double x[], mwSize n, mwSize k)
-{
-  mwIndex i, j;
-  double rhs;
-
-  for (i=0; i<k; ++i) {
-    rhs = b[i];
-    for (j=0; j<i; ++j) {
-      rhs -= U[i*n+j]*x[j];
-    }
-    x[i] = rhs/U[i*n+i];
-  }
-}
-
-
-/* back substitution solver */
-
-void backsubst(char ul, double A[], double b[], double x[], mwSize n, mwSize k)
-{
-  if (tolower(ul) == 'u') {
-    backsubst_U(A, b, x, n, k);
-  }
-  else if (tolower(ul) == 'l') {
-    backsubst_L(A, b, x, n, k);
-  }
-  else {
-    mexErrMsgTxt("Invalid triangular matrix type: must be ''U'' or ''L''");
-  }
-}
-
-
-/* solve equation set using cholesky decomposition */
-
-void cholsolve(char ul, double A[], double b[], double x[], mwSize n, mwSize k)
-{
-  double *tmp;
-
-  tmp = mxMalloc(k*sizeof(double));
-
-  if (tolower(ul) == 'l') {
-    backsubst_L(A, b, tmp, n, k);
-    backsubst_Lt(A, tmp, x, n, k);
-  }
-  else if (tolower(ul) == 'u') {
-    backsubst_Ut(A, b, tmp, n, k);
-    backsubst_U(A, tmp, x, n, k);
-  }
-  else {
-    mexErrMsgTxt("Invalid triangular matrix type: must be either ''U'' or ''L''");
-  }
-
-  mxFree(tmp);
-}
-
-
-/* perform a permutation assignment y := x(ind(1:k)) */
-
-void vec_assign(double y[], double x[], mwIndex ind[], mwSize k)
-{
-  mwIndex i;
-
-  for (i=0; i<k; ++i)
-    y[i] = x[ind[i]];
-}
-
-
-/* matrix transpose */
-
-void transpose(double X[], double Y[], mwSize n, mwSize m)
-{
-  mwIndex i, j, i_m, j_n;
-  
-  if (n<m) {
-    for (j=0; j<m; ++j) {
-      j_n = j*n;
-      for (i=0; i<n; ++i) {
-        Y[j+i*m] = X[i+j_n];
-      }
-    }
-  }
-  else {
-    for (i=0; i<n; ++i) {
-      i_m = i*m;
-      for (j=0; j<m; ++j) {
-        Y[j+i_m] = X[i+j*n];
-      }
-    }
-  }
-}
-
-
-/* print contents of matrix */
-
-void printmat(double A[], int n, int m, char* matname)
-{
-  int i, j;
-  mexPrintf("\n%s = \n\n", matname);
-
-  if (n*m==0) {
-    mexPrintf("   Empty matrix: %d-by-%d\n\n", n, m);
-    return;
-  }
-
-  for (i=0; i<n; ++i) {
-    for (j=0; j<m; ++j)
-      mexPrintf("   %lf", A[j*n+i]);
-    mexPrintf("\n");
-  }
-  mexPrintf("\n");
-}
-
-
-/* print contents of sparse matrix */
-
-void printspmat(mxArray *a, char* matname)
-{
-  mwIndex *aJc = mxGetJc(a);
-  mwIndex *aIr = mxGetIr(a);
-  double *aPr = mxGetPr(a);
-
-  int i;
-
-  mexPrintf("\n%s = \n\n", matname);
-
-  for (i=0; i<aJc[1]; ++i)
-    printf("   (%d,1) = %lf\n", aIr[i]+1,aPr[i]);
-
-  mexPrintf("\n");
-}
-
-
-
-/* matrix multiplication using Winograd's algorithm */
-
-/*
-void mat_mat2(double alpha, double A[], double B[], double X[], mwSize n, mwSize m, mwSize k)
-{
-  
-  mwIndex i1, i2, i3, iX, iA, i2_n;
-  double b, *AA, *BB;
-  
-  AA = mxCalloc(n,sizeof(double));
-  BB = mxCalloc(k,sizeof(double));
-  
-  for (i1=0; i1<n*k; i1++) {
-    X[i1] = 0;
-  }
-  
-  for (i1=0; i1<n; ++i1) {
-    for (i2=0; i2<m/2; ++i2) {
-      AA[i1] += A[i1+2*i2*n]*A[i1+(2*i2+1)*n];
-    }
-  }
-
-  for (i2=0; i2<k; ++i2) {
-    for (i1=0; i1<m/2; ++i1) {
-      BB[i2] += B[2*i1+i2*m]*B[2*i1+1+i2*m];
-    }
-  }
-
-  for (i2=0; i2<k; ++i2) {
-    for (i3=0; i3<m/2; ++i3) {
-      for (i1=0; i1<n; ++i1) {
-        X[i1+i2*n] += (A[i1+(2*i3)*n]+B[2*i3+1+i2*m])*(A[i1+(2*i3+1)*n]+B[2*i3+i2*m]);
-      }
-    }
-  }
-  
-  if (m%2) {
-    for (i2=0; i2<k; ++i2) {
-      for (i1=0; i1<n; ++i1) {
-        X[i1+i2*n] += A[i1+(m-1)*n]*B[m-1+i2*m];
-      }
-    }
-  }
-  
-  for (i2=0; i2<k; ++i2) {
-    for (i1=0; i1<n; ++i1) {
-      X[i1+i2*n] -= (AA[i1] + BB[i2]);
-      X[i1+i2*n] *= alpha;
-    }
-  }
-  
-  mxFree(AA);
-  mxFree(BB);
-}
-*/
-
-
-
-
--- a/DL/RLS-DLA/private/myblas.h	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,492 +0,0 @@
-/**************************************************************************
- *
- * File name: myblas.h
- *
- * Ron Rubinstein
- * Computer Science Department
- * Technion, Haifa 32000 Israel
- * ronrubin@cs
- *
- * Version: 1.1
- * Last updated: 17.8.2009
- *
- * A collection of basic linear algebra functions, in the spirit of the
- * BLAS/LAPACK libraries.
- *
- *************************************************************************/
-
-
-
-#ifndef __MY_BLAS_H__
-#define __MY_BLAS_H__
-
-
-#include "mex.h"
-#include <math.h>
-
-
-
-/**************************************************************************
- * Squared value.
- **************************************************************************/
-#define SQR(X) ((X)*(X))
-
-
-
-/**************************************************************************
- * Matrix-vector multiplication. 
- *
- * Computes an operation of the form:
- *
- *   y := alpha*A*x
- *
- * Parameters:
- *   A - matrix of size n X m
- *   x - vector of length m
- *   y - output vector of length n
- *   alpha - real constant
- *   n, m - dimensions of A
- *
- * Note: This function re-writes the contents of y.
- *
- **************************************************************************/
-void mat_vec(double alpha, double A[], double x[], double y[], mwSize n, mwSize m);
-
-
-
-/**************************************************************************
- * Matrix-transpose-vector multiplication. 
- *
- * Computes an operation of the form:
- *
- *   y := alpha*A'*x
- *
- * Parameters:
- *   A - matrix of size n X m
- *   x - vector of length n
- *   y - output vector of length m
- *   alpha - real constant
- *   n, m - dimensions of A
- *
- * Note: This function re-writes the contents of y.
- *
- **************************************************************************/
-void matT_vec(double alpha, double A[], double x[], double y[], mwSize n, mwSize m);
-
-
-
-/**************************************************************************
- * Sparse-matrix-vector multiplication. 
- *
- * Computes an operation of the form:
- *
- *   y := alpha*A*x
- *
- * where A is a sparse matrix.
- *
- * Parameters:
- *   pr,ir,jc - sparse representation of the matrix A, of size n x m
- *   x - vector of length m
- *   y - output vector of length n
- *   alpha - real constant
- *   n, m - dimensions of A
- *
- * Note: This function re-writes the contents of y.
- *
- **************************************************************************/
-void mat_sp_vec(double alpha, double pr[], mwIndex ir[], mwIndex jc[], double x[], double y[], mwSize n, mwSize m);
-
-
-
-/**************************************************************************
- * Sparse-matrix-transpose-vector multiplication. 
- *
- * Computes an operation of the form:
- *
- *   y := alpha*A'*x
- *
- * where A is a sparse matrix.
- *
- * Parameters:
- *   pr,ir,jc - sparse representation of the matrix A, of size n x m
- *   x - vector of length m
- *   y - output vector of length n
- *   alpha - real constant
- *   n, m - dimensions of A
- *
- * Note: This function re-writes the contents of y.
- *
- **************************************************************************/
-void matT_sp_vec(double alpha, double pr[], mwIndex ir[], mwIndex jc[], double x[], double y[], mwSize n, mwSize m);
-
-
-
-/**************************************************************************
- * Matrix-sparse-vector multiplication. 
- *
- * Computes an operation of the form:
- *
- *   y := alpha*A*x
- *
- * where A is a matrix and x is a sparse vector.
- *
- * Parameters:
- *   A - matrix of size n X m
- *   pr,ir,jc - sparse representation of the vector x, of length m
- *   y - output vector of length n
- *   alpha - real constant
- *   n, m - dimensions of A
- *
- * Note: This function re-writes the contents of y.
- *
- **************************************************************************/
-void mat_vec_sp(double alpha, double A[], double pr[], mwIndex ir[], mwIndex jc[], double y[], mwSize n, mwSize m);
-
-
-
-/**************************************************************************
- * Matrix-transpose-sparse-vector multiplication. 
- *
- * Computes an operation of the form:
- *
- *   y := alpha*A'*x
- *
- * where A is a matrix and x is a sparse vector.
- *
- * Parameters:
- *   A - matrix of size n X m
- *   pr,ir,jc - sparse representation of the vector x, of length n
- *   y - output vector of length m
- *   alpha - real constant
- *   n, m - dimensions of A
- *
- * Note: This function re-writes the contents of y.
- *
- **************************************************************************/
-void matT_vec_sp(double alpha, double A[], double pr[], mwIndex ir[], mwIndex jc[], double y[], mwSize n, mwSize m);
-
-
-
-/**************************************************************************
- * Sparse-matrix-sparse-vector multiplication. 
- *
- * Computes an operation of the form:
- *
- *   y := alpha*A*x
- *
- * where A is a sparse matrix and x is a sparse vector.
- *
- * Parameters:
- *   pr,ir,jc - sparse representation of the matrix A, of size n x m
- *   prx,irx,jcx - sparse representation of the vector x (of length m)
- *   y - output vector of length n
- *   alpha - real constant
- *   n, m - dimensions of A
- *
- * Note: This function re-writes the contents of y.
- *
- **************************************************************************/
-void mat_sp_vec_sp(double alpha, double pr[], mwIndex ir[], mwIndex jc[], double prx[], mwIndex irx[], mwIndex jcx[], double y[], mwSize n, mwSize m);
-
-
-
-/**************************************************************************
- * Sparse-matrix-transpose-sparse-vector multiplication. 
- *
- * Computes an operation of the form:
- *
- *   y := alpha*A'*x
- *
- * where A is a sparse matrix and x is a sparse vector.
- *
- * Importnant note: this function is provided for completeness, but is NOT efficient.
- * If possible, convert x to non-sparse representation and use matT_vec_sp instead.
- *
- * Parameters:
- *   pr,ir,jc - sparse representation of the matrix A, of size n x m
- *   prx,irx,jcx - sparse representation of the vector x (of length n)
- *   y - output vector of length n
- *   alpha - real constant
- *   n, m - dimensions of A
- *
- * Note: This function re-writes the contents of y.
- *
- **************************************************************************/
-void matT_sp_vec_sp(double alpha, double pr[], mwIndex ir[], mwIndex jc[], double prx[], mwIndex irx[], mwIndex jcx[], double y[], mwSize n, mwSize m);
-
-
-
-/**************************************************************************
- * Matrix-matrix multiplication. 
- *
- * Computes an operation of the form:
- *
- *   X := alpha*A*B
- *
- * Parameters:
- *   A - matrix of size n X m
- *   B - matrix of size m X k
- *   X - output matrix of size n X k
- *   alpha - real constant
- *   n, m, k - dimensions of A, B
- *
- * Note: This function re-writes the contents of X.
- *
- **************************************************************************/
-void mat_mat(double alpha, double A[], double B[], double X[], mwSize n, mwSize m, mwSize k);
-
-
-
-/**************************************************************************
- * Matrix-transpose-matrix multiplication. 
- *
- * Computes an operation of the form:
- *
- *   X := alpha*A*B
- *
- * Parameters:
- *   A - matrix of size n X m
- *   B - matrix of size m X k
- *   X - output matrix of size n X k
- *   alpha - real constant
- *   n, m, k - dimensions of A, B
- *
- * Note: This function re-writes the contents of X.
- *
- **************************************************************************/
-void matT_mat(double alpha, double A[], double B[], double X[], mwSize n, mwSize m, mwSize k);
-
-
-
-/**************************************************************************
- * Tensor-matrix multiplication. 
- *
- * This function accepts a 3-D tensor A of size n X m X k
- * and a 2-D matrix B of size l X k.
- * The function computes the 3-D tensor X of size n X m X l, where
- *
- *   X(i,j,:) = B*A(i,j,:)
- *
- * for all i,j.
- *
- * Parameters:
- *   A - tensor of size n X m X k
- *   B - matrix of size l X k
- *   X - output tensor of size n X m X l
- *   alpha - real constant
- *   n, m, k, l - dimensions of A, B
- *
- * Note: This function re-writes the contents of X.
- *
- **************************************************************************/
-void tens_mat(double alpha, double A[], double B[], double X[], mwSize n, mwSize m, mwSize k, mwSize l);
-
-
-
-/**************************************************************************
- * Tensor-matrix-transpose multiplication. 
- *
- * This function accepts a 3-D tensor A of size n X m X k
- * and a 2-D matrix B of size k X l.
- * The function computes the 3-D tensor X of size n X m X l, where
- *
- *   X(i,j,:) = B'*A(i,j,:)
- *
- * for all i,j.
- *
- * Parameters:
- *   A - tensor of size n X m X k
- *   B - matrix of size k X l
- *   X - output tensor of size n X m X l
- *   alpha - real constant
- *   n, m, k, l - dimensions of A, B
- *
- * Note: This function re-writes the contents of X.
- *
- **************************************************************************/
-void tens_matT(double alpha, double A[], double B[], double X[], mwSize n, mwSize m, mwSize k, mwSize l);
-
-
-
-/**************************************************************************
- * Vector-vector sum.
- *
- * Computes an operation of the form:
- *
- *   y := alpha*x + y
- *
- * Parameters:
- *   x - vector of length n
- *   y - output vector of length n
- *   alpha - real constant
- *   n - length of x,y
- *
- * Note: This function re-writes the contents of y.
- *
- **************************************************************************/
-void vec_sum(double alpha, double x[], double y[], mwSize n);
-
-
-
-/**************************************************************************
- * Triangular back substitution.
- *
- * Solve the set of linear equations
- *
- *   T*x = b
- *
- * where T is lower or upper triangular.
- *
- * Parameters:
- *   ul - 'U' for upper triangular, 'L' for lower triangular
- *   A  - matrix of size n x m containing T
- *   b  - vector of length k
- *   x  - output vector of length k
- *   n  - size of first dimension of A
- *   k  - the size of the equation set, k<=n,m
- *
- * Note:
- *   The matrix A can be of any size n X m, as long as n,m >= k. 
- *   Only the lower/upper triangle of the submatrix A(1:k,1:k) defines the
- *   matrix T (depending on the parameter ul).
- *
- **************************************************************************/
-void backsubst(char ul, double A[], double b[], double x[], mwSize n, mwSize k);
-
-
-
-/**************************************************************************
- * Solve a set of equations using a Cholesky decomposition.
- *
- * Solve the set of linear equations
- *
- *   M*x = b
- *
- * where M is positive definite with a known Cholesky decomposition:
- * either M=L*L' (L lower triangular) or M=U'*U (U upper triangular).
- *
- * Parameters:
- *   ul - 'U' for upper triangular, 'L' for lower triangular decomposition
- *   A  - matrix of size n x m with the Cholesky decomposition of M
- *   b  - vector of length k
- *   x  - output vector of length k
- *   n  - size of first dimension of A
- *   k  - the size of the equation set, k<=n,m
- *
- * Note:
- *   The matrix A can be of any size n X m, as long as n,m >= k. 
- *   Only the lower/upper triangle of the submatrix A(1:k,1:k) is used as
- *   the Cholesky decomposition of M (depending on the parameter ul).
- *
- **************************************************************************/
-void cholsolve(char ul, double A[], double b[], double x[], mwSize n, mwSize k);
-
-
-
-/**************************************************************************
- * Maximum absolute value.
- *
- * Returns the index of the coefficient with maximal absolute value in a vector.
- *
- * Parameters:
- *   x - vector of length n
- *   n - length of x
- *
- **************************************************************************/
-mwIndex maxabs(double x[], mwSize n);
-
-
-
-/**************************************************************************
- * Maximum vector element.
- *
- * Returns the index of the maximal coefficient in a vector.
- *
- * Parameters:
- *   x - vector of length n
- *   n - length of x
- *
- **************************************************************************/
-mwIndex maxpos(double x[], mwSize n);
-
-
-
-/**************************************************************************
- * Vector-vector dot product.
- *
- * Computes an operation of the form:
- *
- *   c = a'*b
- *
- * Parameters:
- *   a, b - vectors of length n
- *   n - length of a,b
- *
- * Returns: The dot product c.
- *
- **************************************************************************/
-double dotprod(double a[], double b[], mwSize n);
-
-
-
-/**************************************************************************
- * Indexed vector assignment.
- *
- * Perform a permutation assignment of the form
- *
- *   y = x(ind)
- *
- * where ind is an array of indices to x.
- *
- * Parameters:
- *   y - output vector of length k
- *   x - input vector of arbitrary length
- *   ind - array of indices into x (indices begin at 0)
- *   k - length of the array ind
- *
- **************************************************************************/
-void vec_assign(double y[], double x[], mwIndex ind[], mwSize k);
-
-
-
-/**************************************************************************
- * Matrix transpose.
- *
- * Computes Y := X'
- *
- * Parameters:
- *   X - input matrix of size n X m
- *   Y - output matrix of size m X n
- *   n, m - dimensions of X
- *
- **************************************************************************/
-void transpose(double X[], double Y[], mwSize n, mwSize m);
-
-
-
-/**************************************************************************
- * Print a matrix.
- *
- * Parameters:
- *   A - matrix of size n X m
- *   n, m - dimensions of A
- *   matname - name of matrix to display
- *
- **************************************************************************/
-void printmat(double A[], int n, int m, char* matname);
-
-
-
-/**************************************************************************
- * Print a sparse matrix.
- *
- * Parameters:
- *   A - sparse matrix of type double
- *   matname - name of matrix to display
- *
- **************************************************************************/
-void printspmat(mxArray *A, char* matname);
-
-
-#endif
-
--- a/DL/RLS-DLA/private/normcols.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,17 +0,0 @@
-function y = normcols(x)
-%NORMCOLS Normalize matrix columns.
-%  Y = NORMCOLS(X) normalizes the columns of X to unit length, returning
-%  the result as Y.
-%
-%  See also ADDTOCOLS.
-
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  April 2009
-
-
-y = x*spdiag(1./sqrt(sum(x.*x)));
--- a/DL/RLS-DLA/private/omp2mex.c	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,156 +0,0 @@
-/**************************************************************************
- *
- * File name: omp2mex.c
- *
- * Ron Rubinstein
- * Computer Science Department
- * Technion, Haifa 32000 Israel
- * ronrubin@cs
- *
- * Last Updated: 18.8.2009
- *
- *************************************************************************/
-
-#include "ompcore.h"
-#include "omputils.h"
-#include "mexutils.h"
-
-
-/* Input Arguments */
-
-#define	IN_D	        prhs[0]
-#define IN_X          prhs[1]
-#define IN_DtX        prhs[2]
-#define IN_XtX        prhs[3]
-#define IN_G          prhs[4]
-#define IN_EPS        prhs[5]
-#define IN_SPARSE_G   prhs[6]
-#define IN_MSGDELTA   prhs[7]
-#define IN_MAXATOMS   prhs[8]
-#define IN_PROFILE    prhs[9]
-
-
-/* Output Arguments */
-
-#define	GAMMA_OUT     plhs[0]
-
-
-/***************************************************************************************/
-
-
-void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray*prhs[])
-
-{
-  double *D, *x, *DtX, *XtX, *G, eps, msgdelta;
-  int gmode, maxatoms, profile;
-  mwSize m, n, L;    /* D is n x m , X is n x L, DtX is m x L */
-
-  
-  /* check parameters */
-  
-  checkmatrix(IN_D, "OMP2", "D");
-  checkmatrix(IN_X, "OMP2", "X");
-  checkmatrix(IN_DtX, "OMP2", "DtX");
-  checkmatrix(IN_XtX, "OMP2", "XtX");
-  checkmatrix(IN_G, "OMP2", "G");
-  
-  checkscalar(IN_EPS, "OMP2", "EPSILON");
-  checkscalar(IN_SPARSE_G, "OMP2", "sparse_g");
-  checkscalar(IN_MSGDELTA, "OMP2", "msgdelta");
-  checkscalar(IN_MAXATOMS, "OMP2", "maxatoms");
-  checkscalar(IN_PROFILE, "OMP2", "profile");
-  
-  
-  /* get parameters */
-  
-  x = D = DtX = XtX = G = 0;
-  
-  if (!mxIsEmpty(IN_D))
-    D = mxGetPr(IN_D);
-  
-  if (!mxIsEmpty(IN_X))
-    x = mxGetPr(IN_X);
-  
-  if (!mxIsEmpty(IN_DtX))
-    DtX = mxGetPr(IN_DtX);
-  
-  if (!mxIsEmpty(IN_XtX))
-    XtX = mxGetPr(IN_XtX);
-  
-  if (!mxIsEmpty(IN_G))
-    G = mxGetPr(IN_G);
-  
-  eps = mxGetScalar(IN_EPS);
-  if ((int)(mxGetScalar(IN_SPARSE_G)+1e-2)) {
-    gmode = SPARSE_GAMMA;
-  }
-  else {
-    gmode = FULL_GAMMA;
-  }
-  msgdelta = mxGetScalar(IN_MSGDELTA);
-  if (mxGetScalar(IN_MAXATOMS) < -1e-5) {
-    maxatoms = -1;
-  }
-  else {
-    maxatoms = (int)(mxGetScalar(IN_MAXATOMS)+1e-2);
-  }
-  profile = (int)(mxGetScalar(IN_PROFILE)+1e-2);
-  
-  
-  /* check sizes */
-  
-  if (D && x) {
-    n = mxGetM(IN_D);
-    m = mxGetN(IN_D);
-    L = mxGetN(IN_X);
-    
-    if (mxGetM(IN_X) != n) {
-      mexErrMsgTxt("D and X have incompatible sizes.");
-    }
-    
-    if (G) {
-      if (mxGetN(IN_G)!=mxGetM(IN_G)) {
-        mexErrMsgTxt("G must be a square matrix.");
-      }
-      if (mxGetN(IN_G) != m) {
-        mexErrMsgTxt("D and G have incompatible sizes.");
-      }
-    }
-  }
-  
-  else if (DtX && XtX) {
-    m = mxGetM(IN_DtX);
-    L = mxGetN(IN_DtX);
-    
-    /* set n to an arbitrary value that is at least the max possible number of selected atoms */
-    
-    if (maxatoms>0) {
-      n = maxatoms;
-    }
-    else {
-      n = m;
-    }
-    
-    if ( !(mxGetM(IN_XtX)==L && mxGetN(IN_XtX)==1) && !(mxGetM(IN_XtX)==1 && mxGetN(IN_XtX)==L) ) {
-      mexErrMsgTxt("DtX and XtX have incompatible sizes.");
-    }
-    
-    if (mxGetN(IN_G)!=mxGetM(IN_G)) {
-      mexErrMsgTxt("G must be a square matrix.");
-    }
-    if (mxGetN(IN_G) != m) {
-      mexErrMsgTxt("DtX and G have incompatible sizes.");
-    }
-  }
-  
-  else {
-    mexErrMsgTxt("Either D and X, or DtX and XtX, must be specified.");
-  }
-  
-  
-  /* Do OMP! */
-  
-  GAMMA_OUT = ompcore(D, x, DtX, XtX, G, n, m, L, maxatoms, eps, gmode, profile, msgdelta, 1);
-  
-  return;
-}
--- a/DL/RLS-DLA/private/omp2mex.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,23 +0,0 @@
-%This is the Matlab interface to the OMP2 MEX implementation.
-%The function is not for independent use, only through omp2.m.
-
-
-%OMP2MEX Matlab interface to the OMP2 MEX implementation.
-%  GAMMA = OMP2MEX(D,X,DtX,XtX,G,EPSILON,SPARSE_G,MSGDELTA,MAXATOMS,PROFILE)
-%  invokes the OMP2 MEX function according to the specified parameters. Not
-%  all the parameters are required. Those among D, X, DtX, XtX and G which
-%  are not specified should be passed as [].
-%
-%  EPSILON - the target error.
-%  SPARSE_G - returns a sparse GAMMA when nonzero, full GAMMA when zero.
-%  MSGDELTA - the delay in secs between messages. Zero means no messages.
-%  MAXATOMS - the max number of atoms per signal, negative for no max.
-%  PROFILE - nonzero means that profiling information should be printed.
-
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  April 2009
Binary file DL/RLS-DLA/private/omp2mex.mexa64 has changed
--- a/DL/RLS-DLA/private/ompcore.c	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,409 +0,0 @@
-/**************************************************************************
- *
- * File name: ompcore.c
- *
- * Ron Rubinstein
- * Computer Science Department
- * Technion, Haifa 32000 Israel
- * ronrubin@cs
- *
- * Last Updated: 25.8.2009
- *
- *************************************************************************/
-
-
-#include "ompcore.h"
-#include "omputils.h"
-#include "ompprof.h"
-#include "myblas.h"
-#include <math.h>
-#include <string.h>
-
-
-
-/******************************************************************************
- *                                                                            *
- *                           Batch-OMP Implementation                         *
- *                                                                            *
- ******************************************************************************/  
-
-mxArray* ompcore(double D[], double x[], double DtX[], double XtX[], double G[], mwSize n, mwSize m, mwSize L,
-                 int T, double eps, int gamma_mode, int profile, double msg_delta, int erroromp)
-{
-  
-  profdata pd;
-  mxArray *Gamma;
-  mwIndex i, j, signum, pos, *ind, *gammaIr, *gammaJc, gamma_count;
-  mwSize allocated_coefs, allocated_cols;
-  int DtX_specified, XtX_specified, batchomp, standardomp, *selected_atoms;
-  double *alpha, *r, *Lchol, *c, *Gsub, *Dsub, sum, *gammaPr, *tempvec1, *tempvec2; 
-  double eps2, resnorm, delta, deltaprev, secs_remain;
-  int mins_remain, hrs_remain;
-  clock_t lastprint_time, starttime;
- 
-  
-  
-  /*** status flags ***/
-  
-  DtX_specified = (DtX!=0);   /* indicates whether D'*x was provided */
-  XtX_specified = (XtX!=0);   /* indicates whether sum(x.*x) was provided */
-  
-  standardomp = (G==0);       /* batch-omp or standard omp are selected depending on availability of G */
-  batchomp = !standardomp;
-  
-  
-  
-  /*** allocate output matrix ***/
-  
-  
-  if (gamma_mode == FULL_GAMMA) {
-    
-    /* allocate full matrix of size m X L */
-    
-    Gamma = mxCreateDoubleMatrix(m, L, mxREAL);
-    gammaPr = mxGetPr(Gamma);
-    gammaIr = 0;
-    gammaJc = 0;
-  }
-  else {
-    
-    /* allocate sparse matrix with room for allocated_coefs nonzeros */
-    
-    /* for error-omp, begin with L*sqrt(n)/2 allocated nonzeros, otherwise allocate L*T nonzeros */
-    allocated_coefs = erroromp ? (mwSize)(ceil(L*sqrt((double)n)/2.0) + 1.01) : L*T;
-    Gamma = mxCreateSparse(m, L, allocated_coefs, mxREAL);
-    gammaPr = mxGetPr(Gamma);
-    gammaIr = mxGetIr(Gamma);
-    gammaJc = mxGetJc(Gamma);
-    gamma_count = 0;
-    gammaJc[0] = 0;
-  }
-  
-  
-  /*** helper arrays ***/
-  
-  alpha = (double*)mxMalloc(m*sizeof(double));        /* contains D'*residual */
-  ind = (mwIndex*)mxMalloc(n*sizeof(mwIndex));        /* indices of selected atoms */
-  selected_atoms = (int*)mxMalloc(m*sizeof(int));     /* binary array with 1's for selected atoms */
-  c = (double*)mxMalloc(n*sizeof(double));            /* orthogonal projection result */
-  
-  /* current number of columns in Dsub / Gsub / Lchol */
-  allocated_cols = erroromp ? (mwSize)(ceil(sqrt((double)n)/2.0) + 1.01) : T;
-  
-  /* Cholesky decomposition of D_I'*D_I */
-  Lchol = (double*)mxMalloc(n*allocated_cols*sizeof(double));
-
-  /* temporary vectors for various computations */
-  tempvec1 = (double*)mxMalloc(m*sizeof(double));
-  tempvec2 = (double*)mxMalloc(m*sizeof(double));
-  
-  if (batchomp) {
-    /* matrix containing G(:,ind) - the columns of G corresponding to the selected atoms, in order of selection */
-    Gsub = (double*)mxMalloc(m*allocated_cols*sizeof(double));
-  }
-  else {
-    /* matrix containing D(:,ind) - the selected atoms from D, in order of selection */
-    Dsub = (double*)mxMalloc(n*allocated_cols*sizeof(double));
-    
-    /* stores the residual */
-    r = (double*)mxMalloc(n*sizeof(double));        
-  }
-  
-  if (!DtX_specified) {
-    /* contains D'*x for the current signal */
-    DtX = (double*)mxMalloc(m*sizeof(double));  
-  }
-  
-  
-  
-  /*** initializations for error omp ***/
-  
-  if (erroromp) {
-    eps2 = eps*eps;        /* compute eps^2 */
-    if (T<0 || T>n) {      /* unspecified max atom num - set max atoms to n */
-      T = n;
-    }
-  }
-  
-  
-  
-  /*** initialize timers ***/
-  
-  initprofdata(&pd);             /* initialize profiling counters */
-  starttime = clock();           /* record starting time for eta computations */
-  lastprint_time = starttime;    /* time of last status display */
-  
-  
-  
-  /**********************   perform omp for each signal   **********************/
-  
-  
-  
-  for (signum=0; signum<L; ++signum) {
-    
-    
-    /* initialize residual norm and deltaprev for error-omp */
-    
-    if (erroromp) {
-      if (XtX_specified) {
-        resnorm = XtX[signum];
-      }
-      else {
-        resnorm = dotprod(x+n*signum, x+n*signum, n);
-        addproftime(&pd, XtX_TIME);
-      }
-      deltaprev = 0;     /* delta tracks the value of gamma'*G*gamma */
-    }
-    else {
-      /* ignore residual norm stopping criterion */
-      eps2 = 0;
-      resnorm = 1;
-    }
-    
-    
-    if (resnorm>eps2 && T>0) {
-      
-      /* compute DtX */
-      
-      if (!DtX_specified) {
-        matT_vec(1, D, x+n*signum, DtX, n, m);
-        addproftime(&pd, DtX_TIME);
-      }
-      
-      
-      /* initialize alpha := DtX */
-      
-      memcpy(alpha, DtX + m*signum*DtX_specified, m*sizeof(double));
-      
-      
-      /* mark all atoms as unselected */
-      
-      for (i=0; i<m; ++i) {
-        selected_atoms[i] = 0;
-      }
-      
-    }
-    
-
-    /* main loop */
-    
-    i=0;
-    while (resnorm>eps2 && i<T) {
-
-      /* index of next atom */
-      
-      pos = maxabs(alpha, m);
-      addproftime(&pd, MAXABS_TIME);
-      
-      
-      /* stop criterion: selected same atom twice, or inner product too small */
-      
-      if (selected_atoms[pos] || alpha[pos]*alpha[pos]<1e-14) {
-        break;
-      }
-      
-      
-      /* mark selected atom */
-      
-      ind[i] = pos;
-      selected_atoms[pos] = 1;
-      
-      
-      /* matrix reallocation */
-      
-      if (erroromp && i>=allocated_cols) {
-        
-        allocated_cols = (mwSize)(ceil(allocated_cols*MAT_INC_FACTOR) + 1.01);
-        
-        Lchol = (double*)mxRealloc(Lchol,n*allocated_cols*sizeof(double));
-        
-        batchomp ? (Gsub = (double*)mxRealloc(Gsub,m*allocated_cols*sizeof(double))) :
-                   (Dsub = (double*)mxRealloc(Dsub,n*allocated_cols*sizeof(double))) ;
-      }
-      
-      
-      /* append column to Gsub or Dsub */
-      
-      if (batchomp) {
-        memcpy(Gsub+i*m, G+pos*m, m*sizeof(double));
-      }
-      else {
-        memcpy(Dsub+i*n, D+pos*n, n*sizeof(double));
-      }
-      
-      
-      /*** Cholesky update ***/
-      
-      if (i==0) {
-        *Lchol = 1;
-      }
-      else {
-        
-        /* incremental Cholesky decomposition: compute next row of Lchol */
-        
-        if (standardomp) {
-          matT_vec(1, Dsub, D+n*pos, tempvec1, n, i);      /* compute tempvec1 := Dsub'*d where d is new atom */
-          addproftime(&pd, DtD_TIME);
-        }
-        else {
-          vec_assign(tempvec1, Gsub+i*m, ind, i);          /* extract tempvec1 := Gsub(ind,i) */
-        }
-        backsubst('L', Lchol, tempvec1, tempvec2, n, i);   /* compute tempvec2 = Lchol \ tempvec1 */
-        for (j=0; j<i; ++j) {                              /* write tempvec2 to end of Lchol */
-          Lchol[j*n+i] = tempvec2[j];
-        }
-        
-        /* compute Lchol(i,i) */
-        sum = 0;
-        for (j=0; j<i; ++j) {         /* compute sum of squares of last row without Lchol(i,i) */
-          sum += SQR(Lchol[j*n+i]);
-        }
-        if ( (1-sum) <= 1e-14 ) {     /* Lchol(i,i) is zero => selected atoms are dependent */
-          break;
-        }
-        Lchol[i*n+i] = sqrt(1-sum);
-      }
-      
-      addproftime(&pd, LCHOL_TIME);
-
-      i++;
-      
-      
-      /* perform orthogonal projection and compute sparse coefficients */
-      
-      vec_assign(tempvec1, DtX + m*signum*DtX_specified, ind, i);   /* extract tempvec1 = DtX(ind) */
-      cholsolve('L', Lchol, tempvec1, c, n, i);                     /* solve LL'c = tempvec1 for c */
-      addproftime(&pd, COMPCOEF_TIME);
-      
-
-      /* update alpha = D'*residual */
-      
-      if (standardomp) {
-        mat_vec(-1, Dsub, c, r, n, i);             /* compute r := -Dsub*c */
-        vec_sum(1, x+n*signum, r, n);              /* compute r := x+r */
-        
-        
-        /*memcpy(r, x+n*signum, n*sizeof(double));   /* assign r := x */
-        /*mat_vec1(-1, Dsub, c, 1, r, n, i);         /* compute r := r-Dsub*c */
-        
-        addproftime(&pd, COMPRES_TIME);
-        matT_vec(1, D, r, alpha, n, m);            /* compute alpha := D'*r */
-        addproftime(&pd, DtR_TIME);
-        
-        /* update residual norm */
-        if (erroromp) {
-          resnorm = dotprod(r, r, n);
-          addproftime(&pd, UPDATE_RESNORM_TIME);
-        }
-      }
-      else {
-        mat_vec(1, Gsub, c, tempvec1, m, i);                              /* compute tempvec1 := Gsub*c */
-        memcpy(alpha, DtX + m*signum*DtX_specified, m*sizeof(double));    /* set alpha = D'*x */
-        vec_sum(-1, tempvec1, alpha, m);                                  /* compute alpha := alpha - tempvec1 */
-        addproftime(&pd, UPDATE_DtR_TIME);
-        
-        /* update residual norm */
-        if (erroromp) {
-          vec_assign(tempvec2, tempvec1, ind, i);      /* assign tempvec2 := tempvec1(ind) */
-          delta = dotprod(c,tempvec2,i);               /* compute c'*tempvec2 */
-          resnorm = resnorm - delta + deltaprev;       /* residual norm update */
-          deltaprev = delta;
-          addproftime(&pd, UPDATE_RESNORM_TIME);
-        }
-      }
-    }
-    
-    
-    /*** generate output vector gamma ***/
-
-    if (gamma_mode == FULL_GAMMA) {    /* write the coefs in c to their correct positions in gamma */
-      for (j=0; j<i; ++j) {
-        gammaPr[m*signum + ind[j]] = c[j];
-      }
-    }
-    else {
-      /* sort the coefs by index before writing them to gamma */
-      quicksort(ind,c,i);
-      addproftime(&pd, INDEXSORT_TIME);
-      
-      /* gamma is full - reallocate */
-      if (gamma_count+i >= allocated_coefs) {
-        
-        while(gamma_count+i >= allocated_coefs) {
-          allocated_coefs = (mwSize)(ceil(GAMMA_INC_FACTOR*allocated_coefs) + 1.01);
-        }
-        
-        mxSetNzmax(Gamma, allocated_coefs);
-        mxSetPr(Gamma, mxRealloc(gammaPr, allocated_coefs*sizeof(double)));
-        mxSetIr(Gamma, mxRealloc(gammaIr, allocated_coefs*sizeof(mwIndex)));
-        
-        gammaPr = mxGetPr(Gamma);
-        gammaIr = mxGetIr(Gamma);
-      }
-      
-      /* append coefs to gamma and update the indices */
-      for (j=0; j<i; ++j) {
-        gammaPr[gamma_count] = c[j];
-        gammaIr[gamma_count] = ind[j];
-        gamma_count++;
-      }
-      gammaJc[signum+1] = gammaJc[signum] + i;
-    }
-    
-    
-    
-    /*** display status messages ***/
-    
-    if (msg_delta>0 && (clock()-lastprint_time)/(double)CLOCKS_PER_SEC >= msg_delta)
-    {
-      lastprint_time = clock();
-      
-      /* estimated remainig time */
-      secs2hms( ((L-signum-1)/(double)(signum+1)) * ((lastprint_time-starttime)/(double)CLOCKS_PER_SEC) ,
-        &hrs_remain, &mins_remain, &secs_remain);
-      
-      mexPrintf("omp: signal %d / %d, estimated remaining time: %02d:%02d:%05.2f\n",        
-        signum+1, L, hrs_remain, mins_remain, secs_remain);
-      mexEvalString("drawnow;");
-    }
-    
-  }
-  
-  /* end omp */
-  
-  
-  
-  /*** print final messages ***/
-  
-  if (msg_delta>0) {
-    mexPrintf("omp: signal %d / %d\n", signum, L);
-  }
-  
-  if (profile) {
-    printprofinfo(&pd, erroromp, batchomp, L);
-  }
-  
-  
-  
-  /* free memory */
-  
-  if (!DtX_specified) {
-    mxFree(DtX);
-  }
-  if (standardomp) {
-    mxFree(r);
-    mxFree(Dsub);
-  }
-  else {
-    mxFree(Gsub);
-  }  
-  mxFree(tempvec2);
-  mxFree(tempvec1);
-  mxFree(Lchol);
-  mxFree(c);
-  mxFree(selected_atoms);
-  mxFree(ind);
-  mxFree(alpha);
-  
-  return Gamma;
-}
--- a/DL/RLS-DLA/private/ompcore.h	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,80 +0,0 @@
-/**************************************************************************
- *
- * File name: ompcore.h
- *
- * Ron Rubinstein
- * Computer Science Department
- * Technion, Haifa 32000 Israel
- * ronrubin@cs
- *
- * Last Updated: 18.8.2009
- *
- * Contains the core implementation of Batch-OMP / OMP-Cholesky.
- *
- *************************************************************************/
-
-
-#ifndef __OMP_CORE_H__
-#define __OMP_CORE_H__
-
-
-#include "mex.h"
-
-
-
-/**************************************************************************
- * Perform Batch-OMP or OMP-Cholesky on a specified set of signals, using
- * either a fixed number of atoms or an error bound.
- *
- * Parameters (not all required):
- *
- *   D - the dictionary, of size n X m
- *   x - the signals, of size n X L
- *   DtX - D'*x, of size m X L
- *   XtX - squared norms of the signals in x, sum(x.*x), of length L
- *   G - D'*D, of size m X m
- *   T - target sparsity, or maximal number of atoms for error-based OMP
- *   eps - target residual norm for error-based OMP
- *   gamma_mode - one of the constants FULL_GAMMA or SPARSE_GAMMA
- *   profile - if non-zero, profiling info is printed
- *   msg_delta - positive: the # of seconds between status prints, otherwise: nothing is printed
- *   erroromp - if nonzero indicates error-based OMP, otherwise fixed sparsity OMP
- *
- * Usage:
- *
- *   The function can be called using different parameters, and will have
- *   different complexity depending on the parameters specified. Arrays which
- *   are not specified should be passed as null (0). When G is specified, 
- *   Batch-OMP is performed. Otherwise, OMP-Cholesky is performed.
- *
- *   Fixed-sparsity usage:
- *   ---------------------
- *   Either DtX, or D and x, must be specified. Specifying DtX is more efficient.
- *   XtX does not need to be specified.
- *   When D and x are specified, G is not required. However, not providing G
- *   will significantly degrade efficiency.
- *   The number of atoms must be specified in T. The value of eps is ignored.
- *   Finally, set erroromp to 0.
- *
- *   Error-OMP usage:
- *   ----------------
- *   Either DtX and Xtx, or D and x, must be specified. Specifying DtX and XtX
- *   is more efficient.
- *   When D and x are specified, G is not required. However, not providing G
- *   will significantly degrade efficiency.
- *   The target error must be specified in eps. A hard limit on the number
- *   of atoms can also be specified via the parameter T. Otherwise, T should 
- *   be negative. Finally, set erroromp to nonzero.
- *
- *
- * Returns: 
- *   An mxArray containing the sparse representations of the signals in x
- *   (allocated using the appropriate mxCreateXXX() function).
- *   The array is either full or sparse, depending on gamma_mode.
- *
- **************************************************************************/
-mxArray* ompcore(double D[], double x[], double DtX[], double XtX[], double G[], mwSize n, mwSize m, mwSize L,
-                 int T, double eps, int gamma_mode, int profile, double msg_delta, int erroromp);
-
-
-#endif
--- a/DL/RLS-DLA/private/ompmex.c	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,133 +0,0 @@
-/**************************************************************************
- *
- * File name: ompmex.c
- *
- * Ron Rubinstein
- * Computer Science Department
- * Technion, Haifa 32000 Israel
- * ronrubin@cs
- *
- * Last Updated: 18.8.2009
- *
- *************************************************************************/
-
-#include "ompcore.h"
-#include "omputils.h"
-#include "mexutils.h"
-
-
-/* Input Arguments */
-
-#define IN_D          prhs[0]
-#define IN_X          prhs[1]
-#define IN_DtX        prhs[2]
-#define IN_G          prhs[3]
-#define IN_T          prhs[4]
-#define IN_SPARSE_G   prhs[5]
-#define IN_MSGDELTA   prhs[6]
-#define IN_PROFILE    prhs[7]
-
-
-/* Output Arguments */
-
-#define	GAMMA_OUT     plhs[0]
-
-
-/***************************************************************************************/
-
-
-void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray*prhs[])
-
-{
-  double *D, *x, *DtX, *G, msgdelta;
-  int gmode, profile, T;
-  mwSize m, n, L;   /* D is n x m , X is n x L, DtX is m x L */
-  
-  
-  /* check parameters */
-  
-  checkmatrix(IN_D, "OMP", "D");
-  checkmatrix(IN_X, "OMP", "X");
-  checkmatrix(IN_DtX, "OMP", "DtX");
-  checkmatrix(IN_G, "OMP", "G");
-  
-  checkscalar(IN_T, "OMP", "T");
-  checkscalar(IN_SPARSE_G, "OMP", "sparse_g");
-  checkscalar(IN_MSGDELTA, "OMP", "msgdelta");
-  checkscalar(IN_PROFILE, "OMP", "profile");
-
-  
-  /* get parameters */
-  
-  x = D = DtX = G = 0;
-  
-  if (!mxIsEmpty(IN_D))
-    D = mxGetPr(IN_D);
-  
-  if (!mxIsEmpty(IN_X))
-    x = mxGetPr(IN_X);
-  
-  if (!mxIsEmpty(IN_DtX))
-    DtX = mxGetPr(IN_DtX);
-  
-  if (!mxIsEmpty(IN_G))
-    G = mxGetPr(IN_G);
-  
-  T = (int)(mxGetScalar(IN_T)+1e-2);
-  if ((int)(mxGetScalar(IN_SPARSE_G)+1e-2)) {
-    gmode = SPARSE_GAMMA;
-  }
-  else {
-    gmode = FULL_GAMMA;
-  }
-  msgdelta = mxGetScalar(IN_MSGDELTA);
-  profile = (int)(mxGetScalar(IN_PROFILE)+1e-2);
-  
-  
-  /* check sizes */
-  
-  if (D && x) {
-    n = mxGetM(IN_D);
-    m = mxGetN(IN_D);
-    L = mxGetN(IN_X);
-    
-    if (mxGetM(IN_X) != n) {
-      mexErrMsgTxt("D and X have incompatible sizes.");
-    }
-    
-    if (G) {
-      if (mxGetN(IN_G)!=mxGetM(IN_G)) {
-        mexErrMsgTxt("G must be a square matrix.");
-      }
-      if (mxGetN(IN_G) != m) {
-        mexErrMsgTxt("D and G have incompatible sizes.");
-      }
-    }
-  }
-  
-  else if (DtX) {
-    m = mxGetM(IN_DtX);
-    L = mxGetN(IN_DtX);
-    
-    n = T;  /* arbitrary - it is enough to assume signal length is T */
-    
-    if (mxGetN(IN_G)!=mxGetM(IN_G)) {
-      mexErrMsgTxt("G must be a square matrix.");
-    }
-    if (mxGetN(IN_G) != m) {
-      mexErrMsgTxt("DtX and G have incompatible sizes.");
-    }
-  }
-  
-  else {
-    mexErrMsgTxt("Either D and X, or DtX, must be specified.");
-  }
-  
-  
-  /* Do OMP! */
-  
-  GAMMA_OUT = ompcore(D, x, DtX, 0, G, n, m, L, T, 0, gmode, profile, msgdelta, 0);
-  
-  return;
-}
-
--- a/DL/RLS-DLA/private/ompmex.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,22 +0,0 @@
-%This is the Matlab interface to the OMP MEX implementation.
-%The function is not for independent use, only through omp.m.
-
-
-%OMPMEX Matlab interface to the OMP MEX implementation.
-%  GAMMA = OMPMEX(D,X,DtX,G,L,SPARSE_G,MSGDELTA,PROFILE) invokes the OMP
-%  MEX function according to the specified parameters. Not all the
-%  parameters are required. Those among D, X, DtX and G which are not
-%  specified should be passed as [].
-%
-%  L - the target sparsity.
-%  SPARSE_G - returns a sparse GAMMA when nonzero, full GAMMA when zero.
-%  MSGDELTA - the delay in secs between messages. Zero means no messages.
-%  PROFILE - nonzero means that profiling information should be printed.
-
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  April 2009
Binary file DL/RLS-DLA/private/ompmex.mexa64 has changed
--- a/DL/RLS-DLA/private/ompprof.c	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,113 +0,0 @@
-/**************************************************************************
- *
- * File name: ompprof.c
- *
- * Ron Rubinstein
- * Computer Science Department
- * Technion, Haifa 32000 Israel
- * ronrubin@cs
- *
- * Last Updated: 11.4.2009
- *
- *************************************************************************/
-
-
-#include "ompprof.h"
-
-
-/* initialize profiling information */
-
-void initprofdata(profdata *pd)
-{
-  pd->DtX_time = 0;
-  pd->XtX_time = 0;
-  pd->DtR_time = 0;
-  pd->maxabs_time = 0;
-  pd->DtD_time = 0;
-  pd->Lchol_time = 0;
-  pd->compcoef_time = 0;
-  pd->update_DtR_time = 0;
-  pd->update_resnorm_time = 0;
-  pd->compres_time = 0;
-  pd->indexsort_time = 0;
-  
-  pd->DtX_time_counted = 0;
-  pd->XtX_time_counted = 0;
-  pd->DtR_time_counted = 0;
-  pd->DtD_time_counted = 0;
-  pd->update_DtR_time_counted = 0;
-  pd->resnorm_time_counted = 0;
-  pd->compres_time_counted = 0;
-  pd->indexsort_time_counted = 0;
-  
-  pd->prevtime = clock();
-}
-
-
-/* add elapsed time to profiling data according to specified computation */
-
-void addproftime(profdata *pd, int comptype)
-{
-  switch(comptype) {
-    case DtX_TIME:            pd->DtX_time            += clock()-pd->prevtime; pd->DtX_time_counted = 1; break;
-    case XtX_TIME:            pd->XtX_time            += clock()-pd->prevtime; pd->XtX_time_counted = 1; break;
-    case DtR_TIME:            pd->DtR_time            += clock()-pd->prevtime; pd->DtR_time_counted = 1; break;
-    case DtD_TIME:            pd->DtD_time            += clock()-pd->prevtime; pd->DtD_time_counted = 1; break;
-    case COMPRES_TIME:        pd->compres_time        += clock()-pd->prevtime; pd->compres_time_counted = 1; break;
-    case UPDATE_DtR_TIME:     pd->update_DtR_time     += clock()-pd->prevtime; pd->update_DtR_time_counted = 1; break;
-    case UPDATE_RESNORM_TIME: pd->update_resnorm_time += clock()-pd->prevtime; pd->resnorm_time_counted = 1; break;
-    case INDEXSORT_TIME:      pd->indexsort_time      += clock()-pd->prevtime; pd->indexsort_time_counted = 1; break;
-    case MAXABS_TIME:         pd->maxabs_time         += clock()-pd->prevtime; break;
-    case LCHOL_TIME:          pd->Lchol_time          += clock()-pd->prevtime; break;
-    case COMPCOEF_TIME:       pd->compcoef_time       += clock()-pd->prevtime; break;
-  }
-  pd->prevtime = clock();
-}
-
-
-/* print profiling info */
-
-void printprofinfo(profdata *pd, int erroromp, int batchomp, int signum)
-{
-  clock_t tottime;
-  
-  tottime = pd->DtX_time + pd->XtX_time + pd->DtR_time + pd->DtD_time + pd->compres_time + pd->maxabs_time + 
-            pd->Lchol_time + pd->compcoef_time + pd->update_DtR_time + pd->update_resnorm_time + pd->indexsort_time;
-  
-  mexPrintf("\n\n*****  Profiling information for %s  *****\n\n", erroromp? "OMP2" : "OMP");
-  
-  mexPrintf("OMP mode: %s\n\n", batchomp? "Batch-OMP" : "OMP-Cholesky");
-  
-  mexPrintf("Total signals processed: %d\n\n", signum);
-  
-  if (pd->DtX_time_counted) {
-    mexPrintf("Compute DtX time:      %7.3lf seconds\n", pd->DtX_time/(double)CLOCKS_PER_SEC);
-  }
-  if (pd->XtX_time_counted) {
-    mexPrintf("Compute XtX time:      %7.3lf seconds\n", pd->XtX_time/(double)CLOCKS_PER_SEC);
-  }
-  mexPrintf("Max abs time:          %7.3lf seconds\n", pd->maxabs_time/(double)CLOCKS_PER_SEC);
-  if (pd->DtD_time_counted) {
-    mexPrintf("Compute DtD time:      %7.3lf seconds\n", pd->DtD_time/(double)CLOCKS_PER_SEC);
-  }
-  mexPrintf("Lchol update time:     %7.3lf seconds\n", pd->Lchol_time/(double)CLOCKS_PER_SEC);
-  mexPrintf("Compute coef time:     %7.3lf seconds\n", pd->compcoef_time/(double)CLOCKS_PER_SEC);
-  if (pd->compres_time_counted) {
-    mexPrintf("Compute R time:        %7.3lf seconds\n", pd->compres_time/(double)CLOCKS_PER_SEC);
-  }
-  if (pd->DtR_time_counted) {
-    mexPrintf("Compute DtR time:      %7.3lf seconds\n", pd->DtR_time/(double)CLOCKS_PER_SEC);
-  }
-  if (pd->update_DtR_time_counted) {
-    mexPrintf("Update DtR time:       %7.3lf seconds\n", pd->update_DtR_time/(double)CLOCKS_PER_SEC);
-  }
-  if (pd->resnorm_time_counted) {
-    mexPrintf("Update resnorm time:   %7.3lf seconds\n", pd->update_resnorm_time/(double)CLOCKS_PER_SEC);
-  }
-  if (pd->indexsort_time_counted) {
-    mexPrintf("Index sort time:       %7.3lf seconds\n", pd->indexsort_time/(double)CLOCKS_PER_SEC);
-  }
-  mexPrintf("---------------------------------------\n");
-  mexPrintf("Total time:            %7.3lf seconds\n\n", tottime/(double)CLOCKS_PER_SEC);
-}
-
--- a/DL/RLS-DLA/private/ompprof.h	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,106 +0,0 @@
-/**************************************************************************
- *
- * File name: ompprof.h
- *
- * Ron Rubinstein
- * Computer Science Department
- * Technion, Haifa 32000 Israel
- * ronrubin@cs
- *
- * Last Updated: 18.8.2009
- *
- * Collection of definitions and functions for profiling the OMP method.
- *
- *************************************************************************/
-
-
-#ifndef __OMP_PROF_H__
-#define __OMP_PROF_H__
-
-#include "mex.h"
-#include <time.h>
-
-
-
-/**************************************************************************
- *
- * Constants and data types.
- *
- **************************************************************************/
-
-
-/* constants denoting the various parts of the algorithm */
-
-enum { DtX_TIME, XtX_TIME, DtR_TIME, MAXABS_TIME, DtD_TIME, LCHOL_TIME, COMPCOEF_TIME, 
-       UPDATE_DtR_TIME, UPDATE_RESNORM_TIME, COMPRES_TIME, INDEXSORT_TIME };
-
-       
-       
-/* profiling data container with counters for each part of the algorithm */
-       
-typedef struct profdata 
-{
-  clock_t prevtime;  /* the time when last initialization/call to addproftime() was performed */
-  
-  clock_t DtX_time;
-  clock_t XtX_time;
-  clock_t DtR_time;
-  clock_t maxabs_time;
-  clock_t DtD_time;
-  clock_t Lchol_time;
-  clock_t compcoef_time;
-  clock_t update_DtR_time;
-  clock_t update_resnorm_time;
-  clock_t compres_time;
-  clock_t indexsort_time;
-  
-  /* flags indicating whether profiling data was gathered */
-  int DtX_time_counted;
-  int XtX_time_counted;
-  int DtR_time_counted;
-  int DtD_time_counted;
-  int update_DtR_time_counted;
-  int resnorm_time_counted;
-  int compres_time_counted;
-  int indexsort_time_counted;
-  
-} profdata;
-
-
-
-/**************************************************************************
- *
- * Initialize a profdata structure, zero all counters, and start its timer.
- *
- **************************************************************************/
-void initprofdata(profdata *pd);
-
-
-/**************************************************************************
- *
- * Add elapsed time from last call to addproftime(), or from initialization
- * of profdata, to the counter specified by comptype. comptype must be one
- * of the constants in the enumeration above.
- *
- **************************************************************************/
-void addproftime(profdata *pd, int comptype);
-
-
-/**************************************************************************
- *
- * Print the current contents of the counters in profdata.
- *
- * Parameters:
- *   pd - the profdata to print
- *   erroromp - indicates whether error-based (nonzero) or sparsity-based (zero)
- *              omp was performed.
- *   batchomp - indicates whether batch-omp (nonzero) or omp-cholesky (zero)
- *              omp was performed.
- *   signum   - number of signals processed by omp
- *
- **************************************************************************/
-void printprofinfo(profdata *pd, int erroromp, int batchomp, int signum);
-
-
-#endif
-
--- a/DL/RLS-DLA/private/omputils.c	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,89 +0,0 @@
-/**************************************************************************
- *
- * File name: omputils.c
- *
- * Ron Rubinstein
- * Computer Science Department
- * Technion, Haifa 32000 Israel
- * ronrubin@cs
- *
- * Last Updated: 18.8.2009
- *
- *************************************************************************/
-
-#include "omputils.h"
-#include <math.h>
-
-
-const char FULL_GAMMA_STR[] = "full";
-const char SPARSE_GAMMA_STR[] = "sparse";
-
-
-/* convert seconds to hours, minutes and seconds */
-
-void secs2hms(double sectot, int *hrs, int *mins, double *secs)
-{
-  *hrs = (int)(floor(sectot/3600)+1e-2);
-  sectot = sectot - 3600*(*hrs);
-  *mins = (int)(floor(sectot/60)+1e-2);
-  *secs = sectot - 60*(*mins);
-}
-
-
-/* quicksort, public-domain C implementation by Darel Rex Finley. */
-/* modification: sorts the array data[] as well, according to the values in the array vals[] */
-
-#define  MAX_LEVELS  300
-
-void quicksort(mwIndex vals[], double data[], mwIndex n) {
-  
-  long piv, beg[MAX_LEVELS], end[MAX_LEVELS], i=0, L, R, swap ;
-  double datapiv;
-  
-  beg[0]=0;
-  end[0]=n;
-  
-  while (i>=0) {
-    
-    L=beg[i]; 
-    R=end[i]-1;
-    
-    if (L<R) {
-      
-      piv=vals[L];
-      datapiv=data[L];
-      
-      while (L<R) 
-      {
-        while (vals[R]>=piv && L<R) 
-          R--;
-        if (L<R) {
-          vals[L]=vals[R];
-          data[L++]=data[R];
-        }
-        
-        while (vals[L]<=piv && L<R) 
-          L++;
-        if (L<R) { 
-          vals[R]=vals[L];
-          data[R--]=data[L];
-        }
-      }
-      
-      vals[L]=piv;
-      data[L]=datapiv;
-      
-      beg[i+1]=L+1;
-      end[i+1]=end[i];
-      end[i++]=L;
-      
-      if (end[i]-beg[i] > end[i-1]-beg[i-1]) {
-        swap=beg[i]; beg[i]=beg[i-1]; beg[i-1]=swap;
-        swap=end[i]; end[i]=end[i-1]; end[i-1]=swap;
-      }
-    }
-    else {
-      i--;
-    }
-  }
-}
--- a/DL/RLS-DLA/private/omputils.h	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,77 +0,0 @@
-/**************************************************************************
- *
- * File name: omputils.h
- *
- * Ron Rubinstein
- * Computer Science Department
- * Technion, Haifa 32000 Israel
- * ronrubin@cs
- *
- * Last Updated: 18.8.2009
- *
- * Utility definitions and functions for the OMP library.
- *
- *************************************************************************/
-
-
-#ifndef __OMP_UTILS_H__
-#define __OMP_UTILS_H__
-
-#include "mex.h"
-
-
-/* constants for the representation mode of gamma */
-
-extern const char FULL_GAMMA_STR[];      /* "full" */
-extern const char SPARSE_GAMMA_STR[];    /* "sparse" */
-
-
-#define FULL_GAMMA 1
-#define SPARSE_GAMMA 2
-#define INVALID_MODE 3
-
-
-
-/**************************************************************************
- * Memory management for OMP2.
- *
- * GAMMA_INC_FACTOR:
- * The matrix GAMMA is allocated with sqrt(n)/2 coefficients per signal,
- * for a total of nzmax = L*sqrt(n)/2 nonzeros. Whenever GAMMA needs to be
- * increased, it is increased by a factor of GAMMA_INC_FACTOR.
- *
- * MAT_INC_FACTOR:
- * The matrices Lchol, Gsub and Dsub are allocated with sqrt(n)/2
- * columns each. If additional columns are needed, this number is 
- * increased by a factor of MAT_INC_FACTOR.
- **************************************************************************/
-
-#define GAMMA_INC_FACTOR (1.4)
-#define MAT_INC_FACTOR (1.6)
-
-
-
-/**************************************************************************
- * Convert number of seconds to hour, minute and second representation.
- *
- * Parameters:
- *   sectot - total number of seconds
- *   hrs, mins, secs - output hours (whole) and minutes (whole) and seconds
- *
- **************************************************************************/
-void secs2hms(double sectot, int *hrs, int *mins, double *secs);
-
-
-
-/**************************************************************************
- * QuickSort - public-domain C implementation by Darel Rex Finley.
- *
- * Modified to sort both the array vals[] and the array data[] according 
- * to the values in the array vals[].
- *
- **************************************************************************/
-void quicksort(mwIndex vals[], double data[], mwIndex n);
-
-
-#endif
-
--- a/DL/RLS-DLA/private/printf.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,26 +0,0 @@
-function str = printf(varargin)
-%PRINTF Print formatted text to screen.
-%  PRINTF(FMT,VAL1,VAL2,...) formats the data in VAL1,VAL2,... according to
-%  the format string FMT, and prints the result to the screen.
-%
-%  The call to PRINTF(FMT,VAL1,VAL2,...) simply invokes the call
-%  DISP(SPRINTF(FMT,VAL1,VAL2,...)). For a complete description of the
-%  format string options see function SPRINTF.
-%
-%  STR = PRINTF(...) also returns the formatted string.
-
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  April 2008
-
-
-if (nargout>0)
-  str = sprintf(varargin{:});
-  disp(str);
-else
-  disp(sprintf(varargin{:}));
-end
--- a/DL/RLS-DLA/private/pwsmoothfield.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,32 +0,0 @@
-function f = pwsmoothfield(n,var,alpha)
-% PWSMOOTHFIELD(N,VAR,ALPHA)
-%   Generate an image of piecewise smooth filtered white noise
-%
-%   N = sidelength of the field in pixels
-%   VAR = variance of original white nose
-%   ALPHA = fraction of FFT coefficents to keep
-%
-%   Returns an N-by-N array
-%
-%   This file is used with the kind permission of Stephen J. Wright
-%   (swright@cs.wisc.edu), and was originally included in the GPSR
-%   v1.0 distribution: http://www.lx.it.pt/~mtf/GPSR .
-
-% $Id: pwsmoothfield.m 1040 2008-06-26 20:29:02Z ewout78 $
-
-f = sqrt(var)*randn(n);
-F = fft2(f);
-a = ceil(n*alpha/2);
-b = fix(n*(1-alpha));
-F(a+1:a+b,:) = 0;
-F(:,a+1:a+b) = 0;
-f = real(ifft2(F));
-
-for i = 1:n
-    for j = 1:n
-        if (j/n >= 15*(i/n - 0.5)^3 + 0.4)
-            f(i,j) = f(i,j) + sqrt(var);
-        end
-    end
-end
-
--- a/DL/RLS-DLA/private/reggrid.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,136 +0,0 @@
-function [varargout] = reggrid(sz,num,mode)
-%REGGRID Regular sampling grid.
-%  [I1,I2,...,Ip] = REGGRID([N1 N2 ... Np], NUM) returns the indices
-%  of a regular uniform sampling grid over a p-dimensional matrix with
-%  dimensions N1xN2x...xNp. NUM is the minimal number of required samples,
-%  and it is ensured that the actual number of samples, given by
-%  length(I1)xlength(I2)x...xlength(Ip), is at least as large as NUM.
-%
-%  [I1,I2,...,Ip] = REGGRID([N1 N2 ... Np], NUM,'MODE') specifies the
-%  method for distributing the samples along each dimension. Valid modes
-%  include 'eqdist' (the default mode) and 'eqnum'. 'eqdist' indicates an
-%  equal distance between the samples in each dimension, while 'eqnum'
-%  indicates an equal number of samples in each dimension.
-%
-%  Notes about MODE:
-%
-%    1. The 'eqnum' mode will generally fail when the p-th root of NUM
-%    (i.e. NUM^(1/p)) is larger than min([N1 N2 ... Np]). Thus 'eqdist' is
-%    the more useful choice for sampling an arbitrary number of samples
-%    from the matrix (up to the total number of matrix entries).
-%  
-%    2. In both modes, the equality (of the distance between samples, or
-%    the number of samples in each dimension) is only approximate. This is
-%    because REGGRID attempts to maintain the appropriate equality while at
-%    the same time find a sampling pattern where the total number of
-%    samples is as close as possible to NUM. In general, the larger {Ni}
-%    and NUM are, the tighter the equality.
-%
-%  Example: Sample a set of blocks uniformly from a 2D image.
-%
-%    n = 512; blocknum = 20000; blocksize = [8 8];
-%    im = rand(n,n);
-%    [i1,i2] = reggrid(size(im)-blocksize+1, blocknum);
-%    blocks = sampgrid(im, blocksize, i1, i2);
-%
-%  See also SAMPGRID.
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  November 2007
-
-dim = length(sz);
-
-if (nargin<3)
-  mode = 'eqdist';
-end
-
-if (any(sz<1))
-  error(['Invalid matrix size : [' num2str(sz) ']']);
-end
-
-if (num > prod(sz))
-  warning(['Invalid number of samples, returning maximum number of samples.']);
-elseif (num <= 0)
-  if (num < 0)
-    warning('Invalid number of samples, assuming 0 samples.');
-  end
-  for i = 1:length(sz)
-    varargout{i} = [];
-  end
-  return;
-end
-
-
-if (strcmp(mode,'eqdist'))
-  
-  % approximate distance between samples: total volume divided by number of
-  % samples gives the average volume per sample. then, taking the p-th root
-  % gives the average distance between samples
-  d = (prod(sz)/num)^(1/dim);
-  
-  % compute the initial guess for number of samples in each dimension.
-  % then, while total number of samples is too large, decrese the number of
-  % samples by one in the dimension where the samples are the most crowded.
-  % finally, do the opposite process until just passing num, so the final
-  % number of samples is the closest to num from above.
-  
-  n = min(max(round(sz/d),1),sz);   % set n so that it saturates at 1 and sz
-  
-  active_dims = find(n>1);    % dimensions where the sample num can be reduced
-  while(prod(n)>num && ~isempty(active_dims))
-    [y,id] = min((sz(active_dims)-1)./n(active_dims));
-    n(active_dims(id)) = n(active_dims(id))-1;
-    if (n(active_dims(id)) < 2)
-      active_dims = find(n>1);
-    end
-  end
-
-  active_dims = find(n<sz);    % dimensions where the sample num can be increased
-  while(prod(n)<num && ~isempty(active_dims))
-    [y,id] = max((sz(active_dims)-1)./n(active_dims));
-    n(active_dims(id)) = n(active_dims(id))+1;
-    if (n(active_dims(id)) >= sz(active_dims(id)))
-      active_dims = find(n<sz);
-    end
-  end
-
-  for i = 1:dim
-    varargout{i} = round((1:n(i))/n(i)*sz(i));
-    varargout{i} = varargout{i} - floor((varargout{i}(1)-1)/2);
-  end
-  
-elseif (strcmp(mode,'eqnum'))
-  
-  % same idea as above
-  n = min(max( ones(size(sz)) * round(num^(1/dim)) ,1),sz);
-
-  active_dims = find(n>1);
-  while(prod(n)>num && ~isempty(active_dims))
-    [y,id] = min((sz(active_dims)-1)./n(active_dims));
-    n(active_dims(id)) = n(active_dims(id))-1;
-    if (n(active_dims(id)) < 2)
-      active_dims = find(n>1);
-    end
-  end
-  
-  active_dims = find(n<sz);
-  while(prod(n)<num && ~isempty(active_dims))
-    [y,id] = max((sz(active_dims)-1)./n(active_dims));
-    n(active_dims(id)) = n(active_dims(id))+1;
-    if (n(active_dims(id)) >= sz(active_dims(id)))
-      active_dims = find(n<sz);
-    end
-  end
-  
-  for i = 1:dim
-    varargout{i} = round((1:n(i))/n(i)*sz(i));
-    varargout{i} = varargout{i} - floor((varargout{i}(1)-1)/2);
-  end
-else
-  error('Invalid sampling mode');
-end
-
--- a/DL/RLS-DLA/private/remove_dc.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,31 +0,0 @@
-function [y,dc] = remove_dc(x,columns)
-%REMOVE_DC Remove DC channel from signals.
-%   [Y,DC] = REMOVE_DC(X) removes the DC channel (i.e. the mean) from the
-%   specified (possibly multi-dimensional) signal X. Y is the DC-free
-%   signal and is the same size as X. DC is a scalar containing the mean of
-%   the signal X.
-%
-%   [Y,DC] = REMOVE_DC(X,'columns') where X is a 2D matrix, treats the
-%   columns of X as a set of 1D signals, removing the DC channel from each
-%   one individually. Y is the same size as X and contains the DC-free
-%   signals. DC is a row vector of length size(X,2) containing the means of
-%   the signals in X.
-%
-%   See also ADD_DC.
-
-
-if (nargin==2 && strcmpi(columns,'columns')), columns = 1;
-else columns = 0;
-end
-
-if (columns)
-  dc = mean(x);
-  y = addtocols(x,-dc);
-else
-  if (ndims(x)==2)  % temporary, will remove in future
-    warning('Treating 2D matrix X as a single signal and not each column individually');
-  end
-  dc = mean(x(:));
-  y = x-dc;
-end
-
--- a/DL/RLS-DLA/private/rowlincomb.c	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,148 +0,0 @@
-/**************************************************************************
- *
- * File name: rowlincomb.c
- *
- * Ron Rubinstein
- * Computer Science Department
- * Technion, Haifa 32000 Israel
- * ronrubin@cs
- *
- * Last Updated: 21.5.2009
- *
- *************************************************************************/
-
-#include "mex.h"
-
-
-/* Input Arguments */
-
-#define	X_IN	   prhs[0]
-#define A_IN     prhs[1]
-#define ROWS_IN  prhs[2]
-#define COLS_IN  prhs[3]
-
-
-/* Output Arguments */
-
-#define	Y_OUT	plhs[0]
-
-
-void mexFunction(int nlhs, mxArray *plhs[],
-int nrhs, const mxArray*prhs[])
-
-{
-  double *A, *x, *y, *rows, *cols;
-  mwSize m,n,m1,n1,m2,n2,rownum,colnum;
-  mwIndex *row_ids,*col_ids,i,j;
-  int colnumspecified=0;
-  
-  
-  /* Check for proper number of arguments */
-  
-  if (nrhs!=3 && nrhs!=4) {
-    mexErrMsgTxt("Invalid number of input arguments.");
-  } else if (nlhs > 1) {
-    mexErrMsgTxt("Too many output arguments.");
-  }
-  
-  
-  /* Check the input dimensions */
-  
-  m = mxGetM(A_IN);
-  n = mxGetN(A_IN);
-  if (!mxIsDouble(A_IN) || mxIsComplex(A_IN) || mxGetNumberOfDimensions(A_IN)>2) {
-    mexErrMsgTxt("ROWLINCOMB requires that A be a double matrix.");
-  }
-  
-  m1 = mxGetM(ROWS_IN);
-  n1 = mxGetN(ROWS_IN);
-  if (!mxIsDouble(ROWS_IN) || mxIsComplex(ROWS_IN) || (m1!=1 && n1!=1)) {
-    mexErrMsgTxt("ROWLINCOMB requires that ROWS be an index vector of type double.");
-  }
-  rownum = (m1 > n1) ? m1 : n1;   /* the number of rows in the linear combination */
-  
-  m2 = mxGetM(X_IN);
-  n2 = mxGetN(X_IN);
-  if (!mxIsDouble(X_IN) || mxIsComplex(X_IN) || ((m2!=1) && (n2!=1))) {
-    mexErrMsgTxt("ROWLINCOMB requires that X be a double vector.");
-  }
-  
-  if (m2 != rownum && n2 != rownum) {
-    mexErrMsgTxt("The length of X does not match the number of rows in ROWS.");
-  }
-  
-  if (nrhs==4) {
-    m1 = mxGetM(COLS_IN);
-    n1 = mxGetN(COLS_IN);
-    if (!mxIsDouble(COLS_IN) || mxIsComplex(COLS_IN) || (m1!=1 && n1!=1)) {
-      mexErrMsgTxt("ROWLINCOMB requires that COLS be an index vector of type double.");
-    }
-    colnum = (m1 > n1) ? m1 : n1;   /* the number of columns */
-    colnumspecified = 1;
-    cols = mxGetPr(COLS_IN);
-    
-    Y_OUT = mxCreateDoubleMatrix(1, colnum, mxREAL);
-  }
-  else {
-    cols = 0;
-    Y_OUT = mxCreateDoubleMatrix(1, n, mxREAL);
-  }
-  
-  
-  /* Assign pointers to the various parameters */
-  A = mxGetPr(A_IN);
-  rows = mxGetPr(ROWS_IN);
-  x = mxGetPr(X_IN);
-  y = mxGetPr(Y_OUT);
-  
-  
-  /* check row indices */
-  
-  row_ids = (mwIndex*)mxMalloc(rownum*sizeof(mwIndex));
-  
-  for (i=0; i<rownum; ++i) {
-    row_ids[i] = (mwIndex)(rows[i]+0.1)-1;
-    if (row_ids[i]<0 || row_ids[i]>=m) {
-      mexErrMsgTxt("Row index in ROWS is out of range.");
-    }
-  }
-  
-  
-  
-  if (colnumspecified) {
-    
-    /* check column indices */
-    col_ids = (mwIndex*)mxMalloc(colnum*sizeof(mwIndex));
-    
-    for (i=0; i<colnum; ++i) {
-      col_ids[i] = (mwIndex)(cols[i]+0.1)-1;
-      if (col_ids[i]<0 || col_ids[i]>=n) {
-        mexErrMsgTxt("Column index in COLS is out of range.");
-      }
-    }
-    
-    /* Do the actual computation */
-    for (j=0; j<colnum; ++j) {
-      for (i=0; i<rownum; ++i) {
-        y[j] += A[m*col_ids[j]+row_ids[i]]*x[i];
-      }
-    }
-    
-    mxFree(col_ids);
-  }
-  
-  else {
-    
-    /* Do the actual computation */
-    for (j=0; j<n; ++j) {
-      for (i=0; i<rownum; ++i) {
-        y[j] += A[m*j+row_ids[i]]*x[i];
-      }
-    }
-  }
-  
-  
-  mxFree(row_ids);
-  
-  return;
-}
--- a/DL/RLS-DLA/private/rowlincomb.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,26 +0,0 @@
-%ROWLINCOMB Linear combination of matrix rows.
-%  Y = ROWLINCOMB(X,A,ROWS) computes a linear combination of the rows of
-%  the matrix A. The row indices are specified in the vector ROWS, and the
-%  correspoinding coefficients are specified in the vector X. The vectors
-%  ROWS and X must be of the same length. The call Y = ROWLINCOMB(X,A,ROWS)
-%  is essentially equivalent to the command
-%
-%         Y = X'*A(ROWS,:) .
-%
-%  However, it is implemented much more efficiently.
-%
-%  Y = ROWLINCOMB(X,A,ROWS,COLS) only works on the columns of A specified
-%  in COLS, returning a vector of length equal to COLS. This call is
-%  essentially equivalent to the command
-%
-%         Y = X'*A(ROWS,COLS) .
-%
-%  See also COLLINCOMB.
-
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  April 2009
Binary file DL/RLS-DLA/private/rowlincomb.mexa64 has changed
--- a/DL/RLS-DLA/private/sampgrid.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,72 +0,0 @@
-function y = sampgrid(x,blocksize,varargin)
-%SAMPGRID Sample a multi-dimensional matrix on a regular grid.
-%  Y = SAMPGRID(X,BLOCKSIZE,I1,I2,...,Ip) extracts block samples of size
-%  BLOCKSIZE from the p-dimensional matrix X, arranging the samples as the
-%  column vectors of the matrix Y. The locations of the (1,1,..,1)-th
-%  elements of each block are given in the index vectors I1,I2,..Ip. The
-%  total number of samples taken is length(I1)xlength(I2)x...xlength(Ip).
-%  BLOCKSIZE should either be a p-element vector of the form [N1,N2,...Np],
-%  or a scalar N which is shorthand for the square block size [N N ... N].
-%
-%  Example: Sample a set of blocks uniformly from a 2D image.
-%
-%    n = 512; blocknum = 20000; blocksize = [8 8];
-%    im = rand(n,n);
-%    [i1,i2] = reggrid(size(im)-blocksize+1, blocknum);
-%    blocks = sampgrid(im, blocksize, i1, i2);
-%
-%  See also REGGRID.
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  November 2007
-
-
-p = ndims(x);
-if (p==2 && any(size(x)==1) && length(blocksize)==1)
-  p = 1;
-end
-
-if (numel(blocksize)==1)
-  blocksize = ones(1,p)*blocksize;
-end
-
-n = zeros(1,p);
-for i = 1:p
-  n(i) = length(varargin{i});
-end
-
-nsamps = prod(n);
-
-% create y of the same class as x
-y = zeros(prod(blocksize),nsamps,class(x));
-
-% ids() contains the index of the current block in I1..Ip
-ids = ones(p,1);
-
-% block_ids contains the indices of the current block in X
-block_ids = cell(p,1);
-for j = 1:p
-  block_ids{j} = varargin{j}(1) : varargin{j}(1)+blocksize(j)-1;
-end
-
-for k = 1:nsamps
-  block = x(block_ids{:});
-  y(:,k) = block(:);
-  
-  % increment ids() and block_ids{}
-  if (k<nsamps)
-    j = 1;
-    while (ids(j) == n(j))
-      ids(j) = 1;
-      block_ids{j} = varargin{j}(1) : varargin{j}(1)+blocksize(j)-1;
-      j = j+1;
-    end
-    ids(j) = ids(j)+1;
-    block_ids{j} = varargin{j}(ids(j)) : varargin{j}(ids(j))+blocksize(j)-1;
-  end
-end
-
--- a/DL/RLS-DLA/private/scalarToRGB.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,18 +0,0 @@
-function s = scalarToRGB(x,colors)
-% input values are assumed to lie between 0 and 1
-
-%   Copyright 2008, Ewout van den Berg and Michael P. Friedlander
-%   http://www.cs.ubc.ca/labs/scl/sparco
-%   $Id: scalarToRGB.m 1040 2008-06-26 20:29:02Z ewout78 $
-
-l  = size(colors,1);
-m  = size(x,1);
-n  = size(x,2);
-s  = zeros(m,n,3);
-
-for i=1:m
-  for j=1:n
-     idx = max(1,min(l,1+floor((l-1) * x(i,j))));
-     s(i,j,:) = colors(idx,:);
-  end
-end
--- a/DL/RLS-DLA/private/secs2hms.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,28 +0,0 @@
-function [h,m,s] = secs2hms(t)
-%SECS2HMS Convert seconds to hours, minutes and seconds.
-%  [H,M,S] = SECS2HMS(T) converts the specified number of seconds T to
-%  hours, minutes and seconds. H and M are whole numbers, and S is real.
-%
-%  Example: Estimate the remaining time of a loop
-%
-%    n = 10; tic;
-%    for i = 1:n
-%      pause(1);
-%      [h,m,s] = secs2hms( (n-i)*toc/i );
-%      printf('estimated remaining time: %02d:%02d:%05.2f',h,m,s);
-%    end
-
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  April 2008
-
-
-s = t;
-h = fix(s/3600);
-s = rem(s,3600);
-m = fix(s/60);
-s = rem(s,60);
--- a/DL/RLS-DLA/private/spdiag.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,38 +0,0 @@
-function Y = spdiag(V,K)
-%SPDIAG Sparse diagonal matrices.
-%   SPDIAG(V,K) when V is a vector with N components is a sparse square
-%   matrix of order N+ABS(K) with the elements of V on the K-th diagonal. 
-%   K = 0 is the main diagonal, K > 0 is above the main diagonal and K < 0
-%   is below the main diagonal. 
-%
-%   SPDIAG(V) is the same as SPDIAG(V,0) and puts V on the main diagonal.
-%
-%   See also DIAG, SPDIAGS.
-
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  June 2008
-
-
-if (nargin<2)
-  K = 0;
-end
-
-n = length(V) + abs(K);
-
-if (K>0)
-  i = 1:length(V);
-  j = K+1:n;
-elseif (K<0)
-  i = -K+1:n;
-  j = 1:length(V);
-else
-  i = 1:n;
-  j = 1:n;
-end
-
-Y = sparse(i,j,V(:),n,n);
\ No newline at end of file
--- a/DL/RLS-DLA/private/sprow.c	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,94 +0,0 @@
-/**************************************************************************
- *
- * File name: sprow.c
- *
- * Ron Rubinstein
- * Computer Science Department
- * Technion, Haifa 32000 Israel
- * ronrubin@cs
- *
- * Last Updated: 24.8.2009
- *
- *************************************************************************/
-
-
-#include "mex.h"
-#include "mexutils.h"
-
-
-/* Input Arguments */
-
-#define	A_IN	prhs[0]
-#define J_IN  prhs[1]
-
-
-/* Output Arguments */
-
-#define	X_OUT	  plhs[0]
-#define	ID_OUT	plhs[1]
-
-
-void mexFunction(int nlhs, mxArray *plhs[], 
-		             int nrhs, const mxArray*prhs[])
-     
-{ 
-  double *pr, *x, *id, rowid;
-  mwIndex *ir, *jc;
-  mwSize m, n;
-  mwIndex i, j, k, l, rowlen;
-  
-  if (nrhs != 2) {
-    mexErrMsgTxt("GETSPROW requires two input arguments.");
-  } else if (nlhs > 2) {
-    mexErrMsgTxt("Too many output arguments.");
-  }
-  
-  checkmatrix(A_IN, "GETSPROW", "A");
-  checksparse(A_IN, "GETSPROW", "A");
-  checkscalar(J_IN, "GETSPROW", "J");
-  
-  m = mxGetM(A_IN);
-  n = mxGetN(A_IN);
-  
-  rowid = mxGetScalar(J_IN);
-  if (rowid < 0) {
-    mexErrMsgTxt("Invalid row index.");
-  }
-  j = (mwIndex)(rowid + 1e-2);
-  if (j<1 || j>m) {
-    mexErrMsgTxt("Row index is out of range.");
-  }
-  j--;
-  
-  pr = mxGetPr(A_IN);
-  ir = mxGetIr(A_IN);
-  jc = mxGetJc(A_IN);
-  
-  /* Determine length of row */
-  rowlen = 0;
-  for (i=0; i<jc[n]; ++i) {
-    rowlen += (ir[i]==j);
-  }
-  
-  /* Allocate output parameters */
-  X_OUT = mxCreateDoubleMatrix(1, rowlen, mxREAL);
-  ID_OUT = mxCreateDoubleMatrix(1, rowlen, mxREAL);
-  
-  x = mxGetPr(X_OUT);
-  id = mxGetPr(ID_OUT);
-  
-  /* Compute j-th row */
-  k=0;
-  for (l=1; l<=n; ++l) {
-    i = jc[l-1];
-    while (i<jc[l] && ir[i]<j) {
-      i++;
-    }
-    if (i<jc[l] && ir[i]==j) {
-      x[k] = pr[i];
-      id[k] = l;
-      k++;
-    }
-  }
-  
-}
--- a/DL/RLS-DLA/private/sprow.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,19 +0,0 @@
-%SPROW Extract row of sparse matrix.
-%  X = SPROW(A,J) where A is a sparse matrix, returns the nonzero values in
-%  the row A(J,:).
-%
-%  [X,ID] = SPROW(A,J) also returns the column indices of the nonzeros.
-%
-%  Note that the call [X,ID] = SPROW(A,J) is equivalent (but more efficient
-%  than) the Matlab code
-%
-%    IDS = find(A(J,:)); 
-%    X = A(J,IDS);
-
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  August 2009
Binary file DL/RLS-DLA/private/sprow.mexa64 has changed
--- a/DL/RLS-DLA/private/thumbFromOp.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,42 +0,0 @@
-function P = thumbFromOp(op,m,n,sm,sn,grayscale)
-% Output matrix P, of size m x n, sampled at
-% sm x sn upper top
-
-%   Copyright 2008, Ewout van den Berg and Michael P. Friedlander
-%   http://www.cs.ubc.ca/labs/scl/sparco
-%   $Id: thumbFromOp.m 1040 2008-06-26 20:29:02Z ewout78 $
-
-if nargin < 6, grayscale = 0; end
-    
-info = op([],0);
-
-sm = min(info{1},sm);
-sn = min(info{2},sn);
-M  = zeros(sm,sn);
-
-for i=1:sn
-   v = zeros(info{2},1); v(i) = 1;
-   w = real(op(v,1));
-
-   M(:,i) = w(1:sm);
-end
-
-mn = min(min(M));
-mx = max(max(M));
-M  = (M - mn) / (mx-mn);
-
-idxm = floor(linspace(1,sm+1,m+1)); idxm = idxm(1:end-1);
-idxn = floor(linspace(1,sn+1,n+1)); idxn = idxn(1:end-1);
-
-if grayscale
-   P = 1-M(idxm,idxn);
-else
-   clrmap = hsv;
-   M = 1 + round(M * (length(clrmap)-1));
-   P = zeros(m,n,3);
-   for j1=1:m
-       for j2=1:n
-           P(j1,j2,:) = clrmap(M(idxm(j1),idxn(j2)),:);
-       end
-   end
-end
--- a/DL/RLS-DLA/private/thumbPlot.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,38 +0,0 @@
-function P = thumbPlot(P,x,y,color)
-
-%   Copyright 2008, Ewout van den Berg and Michael P. Friedlander
-%   http://www.cs.ubc.ca/labs/scl/sparco
-%   $Id: thumbPlot.m 1040 2008-06-26 20:29:02Z ewout78 $
-
-m = size(P,1);
-n = size(P,2);
-if (size(P,3) == 0) & (length(color) == 3)
-  % Convert to gray-scale
-  color = 0.30*color(1) + 0.59*color(2) + 0.11*color(3);
-end
-
-mnx = min(x);  % Minimum x
-mxx = max(x);  % Maximum x
-mny = min(y);  % Minimum y
-mxy = max(y);  % Maximum y
-dy  = (mxy - mny) * 0.1;   % Offset on vertical axis
-sx  = (mxx - mnx) * 1.0;   % Scale of horizontal axis
-sy  = (mxy - mny) * 1.2;   % Scale of vertical axis
-
-if (sx < 1e-6), sx = 1; end
-if (sy < 1e-6), sy = 1; end
-
-for i=1:length(x)-1
-   x0 = floor(1 + (n-1) * (x(i  ) - mnx) / sx);
-   x1 = floor(1 + (n-1) * (x(i+1) - mnx) / sx);
-   y0 = floor(    (n-1) * (y(i  ) - mny + dy) / sy);
-   y1 = floor(    (n-1) * (y(i+1) - mny + dy) / sy);
-   
-   samples = 1+2*max(abs(x1-x0)+1,abs(y1-y0)+1);
-   c       = linspace(0,1,samples);
-   idx     = round((1-c)*x0 + c*x1);
-   idy     = n - round((1-c)*y0 + c*y1);
-   for j=1:samples
-      P(idy(j),idx(j),:) = color;
-   end
-end
--- a/DL/RLS-DLA/private/thumbwrite.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,18 +0,0 @@
-function thumbwrite(data,name,opts)
-
-
-%   Copyright 2008, Ewout van den Berg and Michael P. Friedlander
-%   http://www.cs.ubc.ca/labs/scl/sparco
-%   $Id: thumbwrite.m 1040 2008-06-26 20:29:02Z ewout78 $
-
-%
-% data       Thumbnail data in range 0-1
-% name       Name of file (no extension)
-% opts
-%   .thumbtype  Type of image (png, eps, ps, ...)
-%   .thumbdir   Output directory
-%
-
-[type,ext] = getFigureExt(opts.thumbtype);
-data = round(data * 255) / 255;
-imwrite(data,[opts.thumbpath,name,'.',ext],type);
--- a/DL/RLS-DLA/private/timerclear.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,37 +0,0 @@
-function timerclear()
-%TIMERCLEAR Clear all timers.
-%   TIMERCLEAR clears all currenly registered timers, invalidating all
-%   timer ids.
-%
-%   Note: since registered timers do not consume CPU power except for when
-%   the TIMER<*> functions are called, this function is only useful in
-%   situations where a large number of timers have been initialized, and
-%   there is a need to reclaim memory.
-%
-%   See also TIMERINIT, TIMERETA.
-
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  June 2008
-
-
-global utiltbx_timer_start_times    % start times
-global utiltbx_time_lastdisp        % last display times
-global utiltbx_timer_iternums       % iteration numbers
-global utiltbx_timer_lastiter       % last queried iteration numbers
-global utiltbx_timer_name           % timer names
-global utiltbx_timer_callfun        % timer calling functions
-
-
-% clear all timers %
-
-utiltbx_timer_start_times = [];
-utiltbx_time_lastdisp = [];
-utiltbx_timer_iternums = [];
-utiltbx_timer_lastiter = [];
-utiltbx_timer_name = [];
-utiltbx_timer_callfun = [];
--- a/DL/RLS-DLA/private/timereta.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,98 +0,0 @@
-function varargout = timereta(tid,iter,delay)
-%TIMERETA Estimated remaining time.
-%   S = TIMERETA(TID,ITER) returns the estimated remaining time (in
-%   seconds) for the process associated with timer TID, assuming the
-%   process has completed ITER iterations. Note: the function will exit
-%   with an error if the timer TID does not have an associated number of
-%   iterations (see function TIMERINIT).
-%
-%   [H,M,S] = TIMERETA(TID,ITER) returns the estimated remaining time in
-%   hours, minutes and seconds.
-%
-%   TIMERETA(TID,ITER), with no output arguments, prints the estimated
-%   remaining time to the screen. The time is displayed in the format
-%
-%     TIMERNAME: iteration ITER / ITERNUM, estimated remaining time: HH:MM:SS.SS
-%
-%   If the timer has no assigned name, the display format changes to
-%
-%     Iteration ITER / ITERNUM, estimated remaining time: HH:MM:SS.SS
-%
-%   TIMERETA(TID,ITER,DELAY) only displays the remaining time if the
-%   time elapsed since the previous printout is at least DELAY seconds.
-%
-%   See also TIMERINIT, TIMERCLEAR.
-
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  June 2008
-
-
-global utiltbx_timer_start_times 
-global utiltbx_timer_iternums
-global utiltbx_timer_lastiter
-global utiltbx_time_lastdisp
-global utiltbx_timer_name
-
-
-if (tid<1 || tid>length(utiltbx_timer_iternums))
-  error('Unknown timer id');
-end
-
-if (utiltbx_timer_iternums(tid) < 0)
-  error('Specified timer does not have an associated number of iterations');
-end
-
-% update last reported iteration number
-utiltbx_timer_lastiter(tid) = iter;
-
-% compute elapsed time
-starttime = utiltbx_timer_start_times(tid,:);
-currtime = clock;
-timediff = etime(currtime, starttime);
-
-% total iteration number
-iternum = utiltbx_timer_iternums(tid);
-
-% compute eta
-timeremain = (iternum-iter)*timediff/iter;
-
-% return eta in seconds
-if (nargout==1)
-  varargout{1} = timeremain;
-  
-% return eta in hms
-elseif (nargout==3)
-  [varargout{1}, varargout{2}, varargout{3}] = secs2hms(timeremain);
-  
-  
-% print eta
-elseif (nargout==0)
-  
-  % check last display time
-  lastdisptime = utiltbx_time_lastdisp(tid,:);
-  if (nargin>2 && etime(currtime,lastdisptime) < delay)
-    return;
-  end
-  
-  % update last display time
-  utiltbx_time_lastdisp(tid,:) = currtime;
-
-  % display timer
-  [hrs,mins,secs] = secs2hms(timeremain);
-  if (isempty(utiltbx_timer_name{tid}))
-    printf('Iteration %d / %d, estimated remaining time: %02d:%02d:%05.2f', iter, iternum, hrs, mins, secs);
-  else
-    timername = utiltbx_timer_name{tid};
-    printf('%s: iteration %d / %d, estimated remaining time: %02d:%02d:%05.2f', timername, iter, iternum, hrs, mins, secs);
-  end
-   
-% invalid number of outputs
-else
-  error('Invalid number of output arguments');
-end
-
--- a/DL/RLS-DLA/private/timerinit.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,110 +0,0 @@
-function tid = timerinit(par1,par2)
-%TIMERINIT Initialize a new timer.
-%   TID = TIMERINIT() initializes a new timer for counting elapsed time,
-%   and returns its id.
-%
-%   TID = TIMERINIT('TIMERNAME') sets the timer name to the specified
-%   string for display purposes.
-%
-%   TID = TIMERINIT(ITERNUM) initializes a new ETA timer for a process with
-%   ITERNUM iterations. An ETA timer can be used for both counting elapsed
-%   time and estimating remaining time.
-%
-%   TID = TIMERINIT('TIMERNAME',ITERNUM) sets the ETA timer name to the
-%   specified string for display purposes.
-%
-%   Example:
-%
-%     tid = timerinit(100); 
-%     for i = 1:100
-%       pause(0.07);
-%       timereta(tid,i,1);
-%     end
-%     timereta(tid,i);
-%
-%   See also TIMERETA, TIMERCLEAR.
-
-
-%  Ron Rubinstein
-%  Computer Science Department
-%  Technion, Haifa 32000 Israel
-%  ronrubin@cs
-%
-%  June 2008
-
-
-global utiltbx_timer_start_times    % start times
-global utiltbx_time_lastdisp        % last display times
-global utiltbx_timer_iternums       % iteration numbers
-global utiltbx_timer_lastiter       % last queried iteration numbers
-global utiltbx_timer_name           % timer names
-global utiltbx_timer_callfun        % timer calling functions
-
-
-% parse function arguments %
-
-if (nargin==0)
-
-  iternum = -1;
-  timername = '';
-
-elseif (nargin==1)
-
-  if (ischar(par1))
-    iternum = -1;
-    timername = par1;
-
-  elseif (isnumeric(par1) && numel(par1)==1 && par1>0)
-    iternum = par1;
-    timername = '';
-
-  else
-    error('Invalid number of iterations');
-  end
-
-elseif (nargin==2)
-
-  if (ischar(par1) && isnumeric(par2))
-    if (numel(par2)==1 && par2>0)
-      timername = par1;
-      iternum = par2;
-    else
-      error('Invalid number of iterations');
-    end
-  else
-    error('Invalid function syntax');
-  end
-
-else
-  error('Too many function parameters');
-end
-
-
-% register the timer %
-
-if (isempty(utiltbx_timer_start_times))
-  utiltbx_timer_start_times = clock;
-  utiltbx_time_lastdisp = utiltbx_timer_start_times;
-  utiltbx_timer_iternums = double(iternum);
-  utiltbx_timer_lastiter = 0;
-  utiltbx_timer_name = { timername };
-  utiltbx_timer_callfun = {};
-  tid = 1;
-else
-  utiltbx_timer_start_times(end+1,:) = clock;
-  utiltbx_time_lastdisp(end+1,:) = utiltbx_timer_start_times(end,:);
-  utiltbx_timer_iternums(end+1) = double(iternum);
-  utiltbx_timer_lastiter(end+1) = 0;
-  utiltbx_timer_name{end+1} = timername;
-  tid = size(utiltbx_timer_start_times,1);
-end
-
-
-% detect timer calling function %
-
-st = dbstack;
-if (length(dbstack) >= 2)
-  utiltbx_timer_callfun{end+1} = st(2).name;
-else
-  utiltbx_timer_callfun{end+1} = '';
-end
--- a/DL/RLS-DLA/private/updateFigure.m	Wed Mar 16 14:07:15 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,93 +0,0 @@
-function updateFigure(opts, figTitle, figFilename)
-
-%   Copyright 2008, Ewout van den Berg and Michael P. Friedlander
-%   http://www.cs.ubc.ca/labs/scl/sparco
-%   $Id: updateFigure.m 1040 2008-06-26 20:29:02Z ewout78 $
-
-% Ensure default values are available
-opts.linewidth  = getOption(opts,'linewidth', []);
-opts.fontsize   = getOption(opts,'fontsize',  []);
-opts.markersize = getOption(opts,'markersize',[]);
-
-% Output the plots
-if opts.update
-  % Set the line width, font size and marker size
-  chld = [gca; get(gca,'Children')];
-  lnwd = ones(length(chld),1) * NaN;
-  fnts = ones(length(chld),1) * NaN;
-  mrks = ones(length(chld),1) * NaN;
-  for i=1:length(chld)
-    conf = get(chld(i));
-    if ~isempty(opts.linewidth) && isfield(conf,'LineWidth')
-      lnwd(i) = get(chld(i),'LineWidth');
-      if (lnwd(i) == 0.5) % Default
-        set(chld(i),'Linewidth',opts.linewidth);
-      end
-    end
-    if ~isempty(opts.fontsize) && isfield(conf,'FontSize')
-      fnts(i) = get(chld(i),'FontSize');
-      if (fnts(i) == 10) % Default
-        set(chld(i),'FontSize',opts.fontsize);
-      end
-    end
-    if ~isempty(opts.markersize) && isfield(conf,'MarkerSize')
-      mrks(i) = get(chld(i),'MarkerSize');
-      if (mrks(i) == 6) % Default
-        set(chld(i),'MarkerSize',opts.markersize);
-      end
-    end
-  end
-  
-  for i=1:length(opts.figtype)
-     updateFigureType(opts.update, 0, opts.figtype{i}, ...
-                      opts.figpath, figTitle, figFilename);
-  end
-
-  % Restore the line-widths, font size
-  for i=1:length(chld)
-    if ~isnan(lnwd(i))
-      set(chld(i),'LineWidth',lnwd(i));
-    end
-    if ~isnan(fnts(i))
-      set(chld(i),'FontSize',fnts(i));
-    end
-    if ~isnan(mrks(i))
-      set(chld(i),'MarkerSize',mrks(i));
-    end
-  end
-    
-end
-
-% Show the plot
-if opts.show
-  updateFigureType(0,opts.show,'','',figTitle,'');
-end
-
-
-
-function updateFigureType(update,show,figtype,figpath,figTitle,figFilename)
-filename = [figpath,figFilename];
-
-switch lower(figtype)
- case {'pdf'}
-   cmdPostprocess = sprintf('!pdfcrop %s.pdf %s.pdf >& /dev/null', ...
-                            filename, filename);
- otherwise
-   cmdPostprocess = [];
-end
-
-[figtype,figext] = getFigureExt(figtype);
-
-% Print the figure for output (without title)
-if update
-  evalc(sprintf('print -d%s %s.%s;', figtype, filename, figext));
-  
-  if ~isempty(cmdPostprocess)
-    eval(cmdPostprocess);
-  end
-end
-
-% Add title if needed
-if show
-  title(figTitle);
-end