Mercurial > hg > smallbox
changeset 118:ceb81fd882aa sup_158_IMG_Processing_toolbox_
removed old versions of ssim and vmrse
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Tue, 24 May 2011 16:15:30 +0100 |
parents | d120a9e52be5 |
children | 5a20f4936159 |
files | util/ssim_index.m util/vmrse_type2.m |
diffstat | 2 files changed, 0 insertions(+), 237 deletions(-) [+] |
line wrap: on
line diff
--- a/util/ssim_index.m Tue May 24 16:15:05 2011 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,194 +0,0 @@ -function [mssim, ssim_map] = ssim_index(img1, img2, K, window, L) - -%======================================================================== -%SSIM Index, Version 1.0 -%Copyright(c) 2003 Zhou Wang -%All Rights Reserved. -% -%The author is with Howard Hughes Medical Institute, and Laboratory -%for Computational Vision at Center for Neural Science and Courant -%Institute of Mathematical Sciences, New York University. -% -%---------------------------------------------------------------------- -%Permission to use, copy, or modify this software and its documentation -%for educational and research purposes only and without fee is hereby -%granted, provided that this copyright notice and the original authors' -%names appear on all copies and supporting documentation. This program -%shall not be used, rewritten, or adapted as the basis of a commercial -%software or hardware product without first obtaining permission of the -%authors. The authors make no representations about the suitability of -%this software for any purpose. It is provided "as is" without express -%or implied warranty. -%---------------------------------------------------------------------- -% -%This is an implementation of the algorithm for calculating the -%Structural SIMilarity (SSIM) index between two images. Please refer -%to the following paper: -% -%Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image -%quality assessment: From error measurement to structural similarity" -%IEEE Transactios on Image Processing, vol. 13, no. 1, Jan. 2004. -% -%Kindly report any suggestions or corrections to zhouwang@ieee.org -% -%---------------------------------------------------------------------- -% -%Input : (1) img1: the first image being compared -% (2) img2: the second image being compared -% (3) K: constants in the SSIM index formula (see the above -% reference). defualt value: K = [0.01 0.03] -% (4) window: local window for statistics (see the above -% reference). default widnow is Gaussian given by -% window = fspecial('gaussian', 11, 1.5); -% (5) L: dynamic range of the images. default: L = 255 -% -%Output: (1) mssim: the mean SSIM index value between 2 images. -% If one of the images being compared is regarded as -% perfect quality, then mssim can be considered as the -% quality measure of the other image. -% If img1 = img2, then mssim = 1. -% (2) ssim_map: the SSIM index map of the test image. The map -% has a smaller size than the input images. The actual size: -% size(img1) - size(window) + 1. -% -%Default Usage: -% Given 2 test images img1 and img2, whose dynamic range is 0-255 -% -% [mssim ssim_map] = ssim_index(img1, img2); -% -%Advanced Usage: -% User defined parameters. For example -% -% K = [0.05 0.05]; -% window = ones(8); -% L = 100; -% [mssim ssim_map] = ssim_index(img1, img2, K, window, L); -% -%See the results: -% -% mssim %Gives the mssim value -% imshow(max(0, ssim_map).^4) %Shows the SSIM index map -% -%======================================================================== - - -if (nargin < 2 || nargin > 5) - ssim_index = -Inf; - ssim_map = -Inf; - return; -end - -if (size(img1) ~= size(img2)) - ssim_index = -Inf; - ssim_map = -Inf; - return; -end - -[M N] = size(img1); - -if (nargin == 2) - if ((M < 11) || (N < 11)) - ssim_index = -Inf; - ssim_map = -Inf; - return - end - window = fspecial('gaussian', 11, 1.5); % - K(1) = 0.01; % default settings - K(2) = 0.03; % - L = 255; % -end - -if (nargin == 3) - if ((M < 11) || (N < 11)) - ssim_index = -Inf; - ssim_map = -Inf; - return - end - window = fspecial('gaussian', 11, 1.5); - L = 255; - if (length(K) == 2) - if (K(1) < 0 || K(2) < 0) - ssim_index = -Inf; - ssim_map = -Inf; - return; - end - else - ssim_index = -Inf; - ssim_map = -Inf; - return; - end -end - -if (nargin == 4) - [H W] = size(window); - if ((H*W) < 4 || (H > M) || (W > N)) - ssim_index = -Inf; - ssim_map = -Inf; - return - end - L = 255; - if (length(K) == 2) - if (K(1) < 0 || K(2) < 0) - ssim_index = -Inf; - ssim_map = -Inf; - return; - end - else - ssim_index = -Inf; - ssim_map = -Inf; - return; - end -end - -if (nargin == 5) - [H W] = size(window); - if ((H*W) < 4 || (H > M) || (W > N)) - ssim_index = -Inf; - ssim_map = -Inf; - return - end - if (length(K) == 2) - if (K(1) < 0 || K(2) < 0) - ssim_index = -Inf; - ssim_map = -Inf; - return; - end - else - ssim_index = -Inf; - ssim_map = -Inf; - return; - end -end - -C1 = (K(1)*L)^2; -C2 = (K(2)*L)^2; -window = window/sum(sum(window)); -img1 = double(img1); -img2 = double(img2); - -mu1 = filter2(window, img1, 'valid'); -mu2 = filter2(window, img2, 'valid'); -mu1_sq = mu1.*mu1; -mu2_sq = mu2.*mu2; -mu1_mu2 = mu1.*mu2; -sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq; -sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq; -sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2; - -if (C1 > 0 & C2 > 0) - ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2)); -else - numerator1 = 2*mu1_mu2 + C1; - numerator2 = 2*sigma12 + C2; - denominator1 = mu1_sq + mu2_sq + C1; - denominator2 = sigma1_sq + sigma2_sq + C2; - ssim_map = ones(size(mu1)); - index = (denominator1.*denominator2 > 0); - ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index)); - index = (denominator1 ~= 0) & (denominator2 == 0); - ssim_map(index) = numerator1(index)./denominator1(index); -end - -mssim = mean2(ssim_map); - -return \ No newline at end of file
--- a/util/vmrse_type2.m Tue May 24 16:15:05 2011 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,43 +0,0 @@ -function [RMSErn, RMSEcd, rn_im, cd_im] = vmrse_type2(orig, corr, recon) - -%%% Implementation of VectorRMSE type2 -% -% Centre for Digital Music, Queen Mary, University of London. -% This file copyright 2011 Ivan Damnjanovic. -% -% This program is free software; you can redistribute it and/or -% modify it under the terms of the GNU General Public License as -% published by the Free Software Foundation; either version 2 of the -% License, or (at your option) any later version. See the file -% COPYING included with this distribution for more information. -% -% Input: -% - Original image -% - Corrupted image -% - Reconstructed Image -% -% Output: -% - RMSErn - RMSE from residual noise (noise not completely removed) -% - RMSEcd - RMSE from collateral distortion - excessive filtering -% - rn_im - image of residual noise -% - cd_im - image of collateral distortion -% -% F. Russo, "New Method for Performance Evaluation of Grayscale Image -% Denoising filters", IEEE Signal Processing Letters, vol. 17, no. 5, -% pp.417-420, May 2010 -%% - - recon_int = round(recon); - - RN1 = ((orig<recon_int)&(recon_int<=corr)); - RN2 = ((orig>recon_int)&(recon_int>=corr)); - CD1 = ((orig<recon_int)&(recon_int>corr)); - CD2 = ((orig>recon_int)&(recon_int<corr)); - - RMSErn = sqrt(sum(sum((RN1+RN2).*(orig-recon).^2)))/512; - RMSEcd = sqrt(sum(sum((CD1+CD2).*(orig-recon).^2)))/512; - rn_im=RN1+RN2; - cd_im=CD1+CD2; - -end -