Mercurial > hg > smallbox
changeset 193:cc540df790f4 danieleb
Simple example that demonstrated dictionary learning... to be completed
author | Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk> |
---|---|
date | Fri, 09 Mar 2012 15:12:01 +0000 |
parents | f1e601cc916d |
children | 9b0595a8478d |
files | examples/SMALL_DL_test.m |
diffstat | 1 files changed, 62 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/examples/SMALL_DL_test.m Fri Mar 09 15:12:01 2012 +0000 @@ -0,0 +1,62 @@ +function SMALL_DL_test +clear, clc, close all +% Create a 2-dimensional dataset of points that are oriented in 3 +% directions on a x-y plane +nData = 10000; %number of data +theta = [pi/6 pi/3 4*pi/6]; %angles +m = length(theta); +Q = [cos(theta); sin(theta)]; %rotation matrix +X = Q*randmog(m,nData); + +% find principal directions using PCA and plot them +XXt = X*X'; +[U ~] = svd(XXt); +scale = 3; +subplot(1,2,1), hold on +title('Principal Component Analysis') +scatter(X(1,:), X(2,:),'.'); +O = zeros(size(U)); +quiver(O(1,1:2),O(2,1:2),scale*U(1,:),scale*U(2,:),'LineWidth',2,'Color','k') +axis equal + +subplot(1,2,2), hold on +title('K-SVD Dictionary') +scatter(X(1,:), X(2,:),'.'); +axis equal +nAtoms = 3; +initDict = randn(2,nAtoms); +nIter = 10; +O = zeros(size(initDict)); +% apply dictionary learning algorithm +ksvd_params = struct('data',X,... %training data + 'Tdata',1,... %sparsity level + 'dictsize',nAtoms,... %number of atoms + 'initdict',initDict,... + 'iternum',10); %number of iterations +DL = SMALL_init_DL('ksvd','ksvd',ksvd_params); +DL.D = initDict; +xdata = DL.D(1,:); +ydata = DL.D(2,:); +qPlot = quiver(O(1,:),O(2,:),scale*initDict(1,:),scale*initDict(2,:),... + 'LineWidth',2,'Color','k','XDataSource','xdata','YDataSource','ydata'); +problem = struct('b',X); %training data + +%plot dictionary and learn +for iIter=1:nIter + DL.ksvd_params.initdict = DL.D; + DL = SMALL_learn(problem,DL); %learn dictionary + xdata = DL.D(1,:); + ydata = DL.D(2,:); + pause + refreshdata(gcf,'caller'); + %quiver(O(1,:),O(2,:),scale*DL.D(1,:),scale*DL.D(2,:),'LineWidth',2,'Color','k'); +end + + +function X = randmog(m, n) +% RANDMOG - Generate mixture of Gaussians +s = [0.2 2]; +% Choose which Gaussian +G1 = (rand(m, n) < 0.9); +% Make them +X = (G1.*s(1) + (1-G1).*s(2)) .* randn(m,n);