changeset 234:c96880c0c47c

renamed file.
author luisf <luis.figueira@eecs.qmul.ac.uk>
date Thu, 19 Apr 2012 17:21:05 +0100
parents 88a5c02d20d3
children 1f5c793c2b18
files examples/Image Denoising/SMALL_ImgDenoise_DL_test_TwoStep_KSVD_MOD_OLS_Mailhe.m examples/Image Denoising/SMALL_ImgDenoise_DL_test_TwoStep_KSVD_MOD_OLS_OPT.m
diffstat 2 files changed, 309 insertions(+), 309 deletions(-) [+]
line wrap: on
line diff
--- a/examples/Image Denoising/SMALL_ImgDenoise_DL_test_TwoStep_KSVD_MOD_OLS_Mailhe.m	Thu Apr 19 15:55:59 2012 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,309 +0,0 @@
-%%  Dictionary Learning for Image Denoising - KSVD vs Recursive Least Squares
-%
-%   This file contains an example of how SMALLbox can be used to test different
-%   dictionary learning techniques in Image Denoising problem.
-%   It calls generateImageDenoiseProblem that will let you to choose image,
-%   add noise and use noisy image to generate training set for dictionary
-%   learning.
-%   Two dictionary learning techniques were compared:
-%   -   KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient
-%              Implementation of the K-SVD Algorithm using Batch Orthogonal
-%              Matching Pursuit", Technical Report - CS, Technion, April 2008.
-%   -   RLS-DLA - Skretting, K.; Engan, K.; , "Recursive Least Squares
-%       Dictionary Learning Algorithm," Signal Processing, IEEE Transactions on,
-%       vol.58, no.4, pp.2121-2130, April 2010
-%
-
-
-%   Centre for Digital Music, Queen Mary, University of London.
-%   This file copyright 2011 Ivan Damnjanovic.
-%
-%   This program is free software; you can redistribute it and/or
-%   modify it under the terms of the GNU General Public License as
-%   published by the Free Software Foundation; either version 2 of the
-%   License, or (at your option) any later version.  See the file
-%   COPYING included with this distribution for more information.
-%   
-%%
-
-
-
-%   If you want to load the image outside of generateImageDenoiseProblem
-%   function uncomment following lines. This can be useful if you want to
-%   denoise more then one image for example.
-%   Here we are loading test_image.mat that contains structure with 5 images : lena,
-%   barbara,boat, house and peppers.
-clear;
-TMPpath=pwd;
-FS=filesep;
-[pathstr1, name, ext] = fileparts(which('SMALLboxSetup.m'));
-cd([pathstr1,FS,'data',FS,'images']);
-load('test_image.mat');
-cd(TMPpath);
-
-%   Deffining the noise levels that we want to test
-
-noise_level=[10 20 25 50 100];
-
-%   Here we loop through different noise levels and images 
-
-for noise_ind=2:2
-for im_num=2:2
-
-% Defining Image Denoising Problem as Dictionary Learning
-% Problem. As an input we set the number of training patches.
-
-SMALL.Problem = generateImageDenoiseProblem(test_image(im_num).i, 40000, '',256, noise_level(noise_ind));
-SMALL.Problem.name=int2str(im_num);
-
-Edata=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain;
-maxatoms = floor(prod(SMALL.Problem.blocksize)/2);
-
-
-%%
-%   Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary
-%   Boris Mailhe ksvd update implentation omp is the same as with Rubinstein
-%   implementation
-
-
-%   Initialising solver structure
-%   Setting solver structure fields (toolbox, name, param, solution,
-%   reconstructed and time) to zero values
-
-SMALL.solver(1)=SMALL_init_solver;
-
-% Defining the parameters needed for image denoising
-
-SMALL.solver(1).toolbox='ompbox';
-SMALL.solver(1).name='omp2';
-SMALL.solver(1).param=struct(...
-    'epsilon',Edata,...
-    'maxatoms', maxatoms); 
-
-%   Initialising Dictionary structure
-%   Setting Dictionary structure fields (toolbox, name, param, D and time)
-%   to zero values
-
-SMALL.DL(1)=SMALL_init_DL('TwoStepDL', 'KSVD', '', 1);
-
-
-%   Defining the parameters for KSVD
-%   In this example we are learning 256 atoms in 20 iterations, so that
-%   every patch in the training set can be represented with target error in
-%   L2-norm (EData)
-%   Type help ksvd in MATLAB prompt for more options.
-
-
-SMALL.DL(1).param=struct(...
-    'solver', SMALL.solver(1),...
-    'initdict', SMALL.Problem.initdict,...
-    'dictsize', SMALL.Problem.p,...
-    'iternum', 20,...
-    'show_dict', 1);
-
-%   Learn the dictionary
-
-SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1));
-
-%   Set SMALL.Problem.A dictionary
-%   (backward compatiblity with SPARCO: solver structure communicate
-%   only with Problem structure, ie no direct communication between DL and
-%   solver structures)
-
-SMALL.Problem.A = SMALL.DL(1).D;
-SMALL.Problem.reconstruct = @(x) ImageDenoise_reconstruct(x, SMALL.Problem);
-
-%   Denoising the image - find the sparse solution in the learned
-%   dictionary for all patches in the image and the end it uses
-%   reconstruction function to reconstruct the patches and put them into a
-%   denoised image
-
-SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1));
-
-%%
-%   Use MOD Dictionary Learning Algorithm to Learn overcomplete dictionary
-%   Boris Mailhe MOD update implentation omp is the Ron Rubinstein
-%   implementation
-
-
-%   Initialising solver structure
-%   Setting solver structure fields (toolbox, name, param, solution,
-%   reconstructed and time) to zero values
-
-SMALL.solver(2)=SMALL_init_solver;
-
-% Defining the parameters needed for image denoising
-
-SMALL.solver(2).toolbox='ompbox';
-SMALL.solver(2).name='omp2';
-SMALL.solver(2).param=struct(...
-    'epsilon',Edata,...
-    'maxatoms', maxatoms); 
-
-%   Initialising Dictionary structure
-%   Setting Dictionary structure fields (toolbox, name, param, D and time)
-%   to zero values
-
-SMALL.DL(2)=SMALL_init_DL('TwoStepDL', 'MOD', '', 1);
-
-
-%   Defining the parameters for MOD
-%   In this example we are learning 256 atoms in 20 iterations, so that
-%   every patch in the training set can be represented with target error in
-%   L2-norm (EData)
-%   Type help ksvd in MATLAB prompt for more options
-
-SMALL.DL(2).param=struct(...
-    'solver', SMALL.solver(2),...
-    'initdict', SMALL.Problem.initdict,...
-    'dictsize', SMALL.Problem.p,...
-    'iternum', 20,...
-    'show_dict', 1);
-
-%   Learn the dictionary
-
-SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2));
-
-%   Set SMALL.Problem.A dictionary
-%   (backward compatiblity with SPARCO: solver structure communicate
-%   only with Problem structure, ie no direct communication between DL and
-%   solver structures)
-
-SMALL.Problem.A = SMALL.DL(2).D;
-SMALL.Problem.reconstruct = @(x) ImageDenoise_reconstruct(x, SMALL.Problem);
-
-%   Denoising the image - find the sparse solution in the learned
-%   dictionary for all patches in the image and the end it uses
-%   reconstruction function to reconstruct the patches and put them into a
-%   denoised image
-
-SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2));
-%%
-%   Use OLS Dictionary Learning Algorithm to Learn overcomplete dictionary
-%   Boris Mailhe ksvd update implentation omp is the Ron Rubinstein
-%   implementation
-
-
-%   Initialising solver structure
-%   Setting solver structure fields (toolbox, name, param, solution,
-%   reconstructed and time) to zero values
-
-SMALL.solver(3)=SMALL_init_solver;
-
-% Defining the parameters needed for image denoising
-
-SMALL.solver(3).toolbox='ompbox';
-SMALL.solver(3).name='omp2';
-SMALL.solver(3).param=struct(...
-    'epsilon',Edata,...
-    'maxatoms', maxatoms); 
-
-%   Initialising Dictionary structure
-%   Setting Dictionary structure fields (toolbox, name, param, D and time)
-%   to zero values
-
-SMALL.DL(3)=SMALL_init_DL('TwoStepDL', 'ols', '', 1);
-
-
-%   Defining the parameters for KSVD
-%   In this example we are learning 256 atoms in 20 iterations, so that
-%   every patch in the training set can be represented with target error in
-%   L2-norm (EData)
-%   Type help ksvd in MATLAB prompt for more options.
-
-
-SMALL.DL(3).param=struct(...
-    'solver', SMALL.solver(3),...
-    'initdict', SMALL.Problem.initdict,...
-    'dictsize', SMALL.Problem.p,...
-    'iternum', 20,...
-    'learningRate', 0.1,...
-    'show_dict', 1);
-
-%   Learn the dictionary
-
-SMALL.DL(3) = SMALL_learn(SMALL.Problem, SMALL.DL(3));
-
-%   Set SMALL.Problem.A dictionary
-%   (backward compatiblity with SPARCO: solver structure communicate
-%   only with Problem structure, ie no direct communication between DL and
-%   solver structures)
-
-SMALL.Problem.A = SMALL.DL(3).D;
-SMALL.Problem.reconstruct = @(x) ImageDenoise_reconstruct(x, SMALL.Problem);
-
-%   Denoising the image - find the sparse solution in the learned
-%   dictionary for all patches in the image and the end it uses
-%   reconstruction function to reconstruct the patches and put them into a
-%   denoised image
-
-SMALL.solver(3)=SMALL_solve(SMALL.Problem, SMALL.solver(3));
-%%
-%   Use Mailhe Dictionary Learning Algorithm to Learn overcomplete dictionary
-%   Boris Mailhe ksvd update implentation omp is the Ron Rubinstein
-%   implementation
-
-
-%   Initialising solver structure
-%   Setting solver structure fields (toolbox, name, param, solution,
-%   reconstructed and time) to zero values
-
-SMALL.solver(4)=SMALL_init_solver;
-
-% Defining the parameters needed for image denoising
-
-SMALL.solver(4).toolbox='ompbox';
-SMALL.solver(4).name='omp2';
-SMALL.solver(4).param=struct(...
-    'epsilon',Edata,...
-    'maxatoms', maxatoms); 
-
-%   Initialising Dictionary structure
-%   Setting Dictionary structure fields (toolbox, name, param, D and time)
-%   to zero values
-
-SMALL.DL(4)=SMALL_init_DL('TwoStepDL', 'opt', '', 1);
-
-
-%   Defining the parameters for KSVD
-%   In this example we are learning 256 atoms in 20 iterations, so that
-%   every patch in the training set can be represented with target error in
-%   L2-norm (EData)
-%   Type help ksvd in MATLAB prompt for more options.
-
-
-SMALL.DL(4).param=struct(...
-    'solver', SMALL.solver(4),...
-    'initdict', SMALL.Problem.initdict,...
-    'dictsize', SMALL.Problem.p,...
-    'iternum', 20,...
-    'learningRate', 2,...
-    'show_dict', 1);
-
-%   Learn the dictionary
-
-SMALL.DL(4) = SMALL_learn(SMALL.Problem, SMALL.DL(4));
-
-%   Set SMALL.Problem.A dictionary
-%   (backward compatiblity with SPARCO: solver structure communicate
-%   only with Problem structure, ie no direct communication between DL and
-%   solver structures)
-
-SMALL.Problem.A = SMALL.DL(4).D;
-SMALL.Problem.reconstruct = @(x) ImageDenoise_reconstruct(x, SMALL.Problem);
-
-%   Denoising the image - find the sparse solution in the learned
-%   dictionary for all patches in the image and the end it uses
-%   reconstruction function to reconstruct the patches and put them into a
-%   denoised image
-
-SMALL.solver(4)=SMALL_solve(SMALL.Problem, SMALL.solver(4));
-
-%% show results %%
-
-SMALL_ImgDeNoiseResult(SMALL);
-
-%clear SMALL;
-end
-end
-
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/examples/Image Denoising/SMALL_ImgDenoise_DL_test_TwoStep_KSVD_MOD_OLS_OPT.m	Thu Apr 19 17:21:05 2012 +0100
@@ -0,0 +1,309 @@
+%%  Dictionary Learning for Image Denoising - KSVD vs Recursive Least Squares
+%
+%   This file contains an example of how SMALLbox can be used to test different
+%   dictionary learning techniques in Image Denoising problem.
+%   It calls generateImageDenoiseProblem that will let you to choose image,
+%   add noise and use noisy image to generate training set for dictionary
+%   learning.
+%   Two dictionary learning techniques were compared:
+%   -   KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient
+%              Implementation of the K-SVD Algorithm using Batch Orthogonal
+%              Matching Pursuit", Technical Report - CS, Technion, April 2008.
+%   -   RLS-DLA - Skretting, K.; Engan, K.; , "Recursive Least Squares
+%       Dictionary Learning Algorithm," Signal Processing, IEEE Transactions on,
+%       vol.58, no.4, pp.2121-2130, April 2010
+%
+
+
+%   Centre for Digital Music, Queen Mary, University of London.
+%   This file copyright 2011 Ivan Damnjanovic.
+%
+%   This program is free software; you can redistribute it and/or
+%   modify it under the terms of the GNU General Public License as
+%   published by the Free Software Foundation; either version 2 of the
+%   License, or (at your option) any later version.  See the file
+%   COPYING included with this distribution for more information.
+%   
+%%
+
+
+
+%   If you want to load the image outside of generateImageDenoiseProblem
+%   function uncomment following lines. This can be useful if you want to
+%   denoise more then one image for example.
+%   Here we are loading test_image.mat that contains structure with 5 images : lena,
+%   barbara,boat, house and peppers.
+clear;
+TMPpath=pwd;
+FS=filesep;
+[pathstr1, name, ext] = fileparts(which('SMALLboxSetup.m'));
+cd([pathstr1,FS,'data',FS,'images']);
+load('test_image.mat');
+cd(TMPpath);
+
+%   Deffining the noise levels that we want to test
+
+noise_level=[10 20 25 50 100];
+
+%   Here we loop through different noise levels and images 
+
+for noise_ind=2:2
+for im_num=2:2
+
+% Defining Image Denoising Problem as Dictionary Learning
+% Problem. As an input we set the number of training patches.
+
+SMALL.Problem = generateImageDenoiseProblem(test_image(im_num).i, 40000, '',256, noise_level(noise_ind));
+SMALL.Problem.name=int2str(im_num);
+
+Edata=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain;
+maxatoms = floor(prod(SMALL.Problem.blocksize)/2);
+
+
+%%
+%   Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary
+%   Boris Mailhe ksvd update implentation omp is the same as with Rubinstein
+%   implementation
+
+
+%   Initialising solver structure
+%   Setting solver structure fields (toolbox, name, param, solution,
+%   reconstructed and time) to zero values
+
+SMALL.solver(1)=SMALL_init_solver;
+
+% Defining the parameters needed for image denoising
+
+SMALL.solver(1).toolbox='ompbox';
+SMALL.solver(1).name='omp2';
+SMALL.solver(1).param=struct(...
+    'epsilon',Edata,...
+    'maxatoms', maxatoms); 
+
+%   Initialising Dictionary structure
+%   Setting Dictionary structure fields (toolbox, name, param, D and time)
+%   to zero values
+
+SMALL.DL(1)=SMALL_init_DL('TwoStepDL', 'KSVD', '', 1);
+
+
+%   Defining the parameters for KSVD
+%   In this example we are learning 256 atoms in 20 iterations, so that
+%   every patch in the training set can be represented with target error in
+%   L2-norm (EData)
+%   Type help ksvd in MATLAB prompt for more options.
+
+
+SMALL.DL(1).param=struct(...
+    'solver', SMALL.solver(1),...
+    'initdict', SMALL.Problem.initdict,...
+    'dictsize', SMALL.Problem.p,...
+    'iternum', 20,...
+    'show_dict', 1);
+
+%   Learn the dictionary
+
+SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1));
+
+%   Set SMALL.Problem.A dictionary
+%   (backward compatiblity with SPARCO: solver structure communicate
+%   only with Problem structure, ie no direct communication between DL and
+%   solver structures)
+
+SMALL.Problem.A = SMALL.DL(1).D;
+SMALL.Problem.reconstruct = @(x) ImageDenoise_reconstruct(x, SMALL.Problem);
+
+%   Denoising the image - find the sparse solution in the learned
+%   dictionary for all patches in the image and the end it uses
+%   reconstruction function to reconstruct the patches and put them into a
+%   denoised image
+
+SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1));
+
+%%
+%   Use MOD Dictionary Learning Algorithm to Learn overcomplete dictionary
+%   Boris Mailhe MOD update implentation omp is the Ron Rubinstein
+%   implementation
+
+
+%   Initialising solver structure
+%   Setting solver structure fields (toolbox, name, param, solution,
+%   reconstructed and time) to zero values
+
+SMALL.solver(2)=SMALL_init_solver;
+
+% Defining the parameters needed for image denoising
+
+SMALL.solver(2).toolbox='ompbox';
+SMALL.solver(2).name='omp2';
+SMALL.solver(2).param=struct(...
+    'epsilon',Edata,...
+    'maxatoms', maxatoms); 
+
+%   Initialising Dictionary structure
+%   Setting Dictionary structure fields (toolbox, name, param, D and time)
+%   to zero values
+
+SMALL.DL(2)=SMALL_init_DL('TwoStepDL', 'MOD', '', 1);
+
+
+%   Defining the parameters for MOD
+%   In this example we are learning 256 atoms in 20 iterations, so that
+%   every patch in the training set can be represented with target error in
+%   L2-norm (EData)
+%   Type help ksvd in MATLAB prompt for more options
+
+SMALL.DL(2).param=struct(...
+    'solver', SMALL.solver(2),...
+    'initdict', SMALL.Problem.initdict,...
+    'dictsize', SMALL.Problem.p,...
+    'iternum', 20,...
+    'show_dict', 1);
+
+%   Learn the dictionary
+
+SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2));
+
+%   Set SMALL.Problem.A dictionary
+%   (backward compatiblity with SPARCO: solver structure communicate
+%   only with Problem structure, ie no direct communication between DL and
+%   solver structures)
+
+SMALL.Problem.A = SMALL.DL(2).D;
+SMALL.Problem.reconstruct = @(x) ImageDenoise_reconstruct(x, SMALL.Problem);
+
+%   Denoising the image - find the sparse solution in the learned
+%   dictionary for all patches in the image and the end it uses
+%   reconstruction function to reconstruct the patches and put them into a
+%   denoised image
+
+SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2));
+%%
+%   Use OLS Dictionary Learning Algorithm to Learn overcomplete dictionary
+%   Boris Mailhe ksvd update implentation omp is the Ron Rubinstein
+%   implementation
+
+
+%   Initialising solver structure
+%   Setting solver structure fields (toolbox, name, param, solution,
+%   reconstructed and time) to zero values
+
+SMALL.solver(3)=SMALL_init_solver;
+
+% Defining the parameters needed for image denoising
+
+SMALL.solver(3).toolbox='ompbox';
+SMALL.solver(3).name='omp2';
+SMALL.solver(3).param=struct(...
+    'epsilon',Edata,...
+    'maxatoms', maxatoms); 
+
+%   Initialising Dictionary structure
+%   Setting Dictionary structure fields (toolbox, name, param, D and time)
+%   to zero values
+
+SMALL.DL(3)=SMALL_init_DL('TwoStepDL', 'ols', '', 1);
+
+
+%   Defining the parameters for KSVD
+%   In this example we are learning 256 atoms in 20 iterations, so that
+%   every patch in the training set can be represented with target error in
+%   L2-norm (EData)
+%   Type help ksvd in MATLAB prompt for more options.
+
+
+SMALL.DL(3).param=struct(...
+    'solver', SMALL.solver(3),...
+    'initdict', SMALL.Problem.initdict,...
+    'dictsize', SMALL.Problem.p,...
+    'iternum', 20,...
+    'learningRate', 0.1,...
+    'show_dict', 1);
+
+%   Learn the dictionary
+
+SMALL.DL(3) = SMALL_learn(SMALL.Problem, SMALL.DL(3));
+
+%   Set SMALL.Problem.A dictionary
+%   (backward compatiblity with SPARCO: solver structure communicate
+%   only with Problem structure, ie no direct communication between DL and
+%   solver structures)
+
+SMALL.Problem.A = SMALL.DL(3).D;
+SMALL.Problem.reconstruct = @(x) ImageDenoise_reconstruct(x, SMALL.Problem);
+
+%   Denoising the image - find the sparse solution in the learned
+%   dictionary for all patches in the image and the end it uses
+%   reconstruction function to reconstruct the patches and put them into a
+%   denoised image
+
+SMALL.solver(3)=SMALL_solve(SMALL.Problem, SMALL.solver(3));
+%%
+%   Use Mailhe Dictionary Learning Algorithm to Learn overcomplete dictionary
+%   Boris Mailhe ksvd update implentation omp is the Ron Rubinstein
+%   implementation
+
+
+%   Initialising solver structure
+%   Setting solver structure fields (toolbox, name, param, solution,
+%   reconstructed and time) to zero values
+
+SMALL.solver(4)=SMALL_init_solver;
+
+% Defining the parameters needed for image denoising
+
+SMALL.solver(4).toolbox='ompbox';
+SMALL.solver(4).name='omp2';
+SMALL.solver(4).param=struct(...
+    'epsilon',Edata,...
+    'maxatoms', maxatoms); 
+
+%   Initialising Dictionary structure
+%   Setting Dictionary structure fields (toolbox, name, param, D and time)
+%   to zero values
+
+SMALL.DL(4)=SMALL_init_DL('TwoStepDL', 'opt', '', 1);
+
+
+%   Defining the parameters for KSVD
+%   In this example we are learning 256 atoms in 20 iterations, so that
+%   every patch in the training set can be represented with target error in
+%   L2-norm (EData)
+%   Type help ksvd in MATLAB prompt for more options.
+
+
+SMALL.DL(4).param=struct(...
+    'solver', SMALL.solver(4),...
+    'initdict', SMALL.Problem.initdict,...
+    'dictsize', SMALL.Problem.p,...
+    'iternum', 20,...
+    'learningRate', 2,...
+    'show_dict', 1);
+
+%   Learn the dictionary
+
+SMALL.DL(4) = SMALL_learn(SMALL.Problem, SMALL.DL(4));
+
+%   Set SMALL.Problem.A dictionary
+%   (backward compatiblity with SPARCO: solver structure communicate
+%   only with Problem structure, ie no direct communication between DL and
+%   solver structures)
+
+SMALL.Problem.A = SMALL.DL(4).D;
+SMALL.Problem.reconstruct = @(x) ImageDenoise_reconstruct(x, SMALL.Problem);
+
+%   Denoising the image - find the sparse solution in the learned
+%   dictionary for all patches in the image and the end it uses
+%   reconstruction function to reconstruct the patches and put them into a
+%   denoised image
+
+SMALL.solver(4)=SMALL_solve(SMALL.Problem, SMALL.solver(4));
+
+%% show results %%
+
+SMALL_ImgDeNoiseResult(SMALL);
+
+%clear SMALL;
+end
+end
+