Mercurial > hg > smallbox
changeset 159:23763c5fbda5 danieleb
Merge
author | Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk> |
---|---|
date | Wed, 31 Aug 2011 10:43:32 +0100 |
parents | 855aa3288394 (diff) b14209313ba4 (current diff) |
children | e3035d45d014 |
files | util/SMALL_solve.m |
diffstat | 7 files changed, 297 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/.hgignore Wed Aug 31 10:43:32 2011 +0100 @@ -0,0 +1,20 @@ +toolboxes/CVX +toolboxes/GPSR +toolboxes/KSVD +toolboxes/KSVDS +toolboxes/SPARCO +toolboxes/SparseLab +toolboxes/Sparsify +toolboxes/SPGL1 +solvers/SMALL_ompGabor/omp2mexGabor\.mexmaci64 +solvers/SMALL_ompGabor/ompmexGabor\.mexmaci64 +util/ksvd utils/addtocols\.mexmaci64 +util/ksvd utils/col2imstep\.mexmaci64 +util/ksvd utils/collincomb\.mexmaci64 +util/ksvd utils/im2colstep\.mexmaci64 +util/ksvd utils/rowlincomb\.mexmaci64 +util/ksvd utils/sprow\.mexmaci64 +util/Rice Wavelet Toolbox/mdwt\.mexmaci64 +util/Rice Wavelet Toolbox/midwt\.mexmaci64 +util/Rice Wavelet Toolbox/mirdwt\.mexmaci64 +util/Rice Wavelet Toolbox/mrdwt\.mexmaci64
--- a/.hgtags Mon Aug 22 11:46:35 2011 +0100 +++ b/.hgtags Wed Aug 31 10:43:32 2011 +0100 @@ -3,3 +3,4 @@ 9ff69e8e049f936804d0e5876cd4d367be9f3c4a backup 14032011 b14e1f6ee4bea90a8a894a52c1114a72aa818071 ver_1.1 19e0af5709140e163faaf9d8cf4b83a664be1edc release_1.5 +a4d0977d45956b96579a3ed83a4e6a1869ee6055 danieleb
--- a/DL/two-step DL/SMALL_two_step_DL.m Mon Aug 22 11:46:35 2011 +0100 +++ b/DL/two-step DL/SMALL_two_step_DL.m Wed Aug 31 10:43:32 2011 +0100 @@ -76,7 +76,7 @@ end % determine if we should do decorrelation in every iteration % -if isfield(DL.param,'coherence') +if isfield(DL.param,'coherence') && isscalar(DL.param.coherence) decorrelate = 1; mu = DL.param.coherence; else @@ -108,13 +108,20 @@ % main loop % for i = 1:iternum + disp([num2str(i) '/' num2str(iternum)]); Problem.A = dico; solver = SMALL_solve(Problem, solver); [dico, solver.solution] = dico_update(dico, sig, solver.solution, ... typeUpdate, flow, learningRate); - if (decorrelate) - dico = dico_decorr(dico, mu, solver.solution); - end + dico = normcols(dico); + switch DL.param.decFcn + case 'mailhe' + dico = dico_decorr(dico, mu, solver.solution); + case 'tropp' + [n m] = size(dico); + dico = grassmanian(n,m,[],[],[],dico,true); + otherwise + end if ((show_dictionary)&&(mod(i,show_iter)==0)) dictimg = SMALL_showdict(dico,[8 8],... @@ -139,4 +146,4 @@ Y(blockids) = sum(X(:,blockids).^2); end -end \ No newline at end of file +end
--- a/DL/two-step DL/dico_decorr.m Mon Aug 22 11:46:35 2011 +0100 +++ b/DL/two-step DL/dico_decorr.m Wed Aug 31 10:43:32 2011 +0100 @@ -9,6 +9,8 @@ % Result: % dico: a dictionary close to the input one with coherence mu. + eps = 1e-6; % define tolerance for normalisation term alpha + % compute atom weights if nargin > 2 rank = sum(amp.*amp, 2); @@ -20,7 +22,7 @@ % coherence mu. niter can be adjusted to needs. niter = 1; while niter < 5 && ... - max(max(abs(dico'*dico -eye(length(dico))))) > mu + 10^-6 + max(max(abs(dico'*dico -eye(length(dico))))) > mu + eps % find pairs of high correlation atoms colors = dico_color(dico, mu); @@ -36,7 +38,7 @@ % update the atom corr = dico(:,index(1))'*dico(:,index(2)); - alpha = sqrt((1-mu*mu)/(1-corr*corr)); + alpha = sqrt((1-mu*mu)/(1-corr^2+eps)); beta = corr*alpha-mu*sign(corr); dico(:,index(2)) = alpha*dico(:,index(2))... -beta*dico(:,index(1));
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/examples/SMALL_test_coherence.m Wed Aug 31 10:43:32 2011 +0100 @@ -0,0 +1,210 @@ +clear + +%% Parameteres + +% Dictionary learning parameters +toolbox = 'TwoStepDL'; %dictionary learning toolbox +dicUpdate = {'ksvd','mailhe'}; %dictionary updates +iterNum = 20; %number of iterations + +% Test signal parameters +signal = audio('music03_16kHz.wav'); %audio signal +blockSize = 256; %size of audio frames +dictSize = 512; %number of atoms in the dictionary +overlap = 0.5; %overlap between consecutive frames +sigma = 1e6; %snr of noise (set to be negligible so that the problem becomes approximation rather than denoising) +percActiveAtoms = 5; %percentage of active atoms + +% Dependent parameters +nActiveAtoms = fix(blockSize/100*percActiveAtoms); %number of active atoms +epsilon = 1/sigma; %error constraint for sparse representation step (corresponds to noise applied to signals) +minCoherence = sqrt((dictSize-blockSize)/(blockSize*(dictSize-1))); %target coherence (based on coherence lower bound) + +% Initial dictionaries +dctDict = dictionary('dct',blockSize,dictSize); +dctDict = dctDict.phi; +gaborParam = struct('N',blockSize,'redundancyFactor',2,'wd',@rectwin); +gaborDict = Gabor_Dictionary(gaborParam); + +%% Generate audio denoising problem with low noise (audio representation) +SMALL.Problem = generateAudioDenoiseProblem(signal.s,[],blockSize,... + dictSize,overlap,sigma); % generate representation problem +SMALL.Problem.b1 = SMALL.Problem.b; % copy signals from training set b to test set b1 (needed for later functions) + +% omp2 sparse representation solver +ompParam = struct('X',SMALL.Problem.b,'epsilon',epsilon,'maxatoms',nActiveAtoms); %parameters +solver = SMALL_init_solver('ompbox','omp2',ompParam,false); %solver structure + + +%% Test ksvd dictionary update +name = dicUpdate{1}; %use ksvd update +SMALL.DL(1:9) = SMALL_init_DL(toolbox,name); %create dictionary learning structures + +% learn with random initialisation and no decorrelation +SMALL.DL(1).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','none'); %parameters for the dictionary learning +SMALL.DL(1) = SMALL_learn(SMALL.Problem,SMALL.DL(1)); %learn dictionary + +% learn with random initialisation and mailhe decorrelation +SMALL.DL(2).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','mailhe','coherence',minCoherence); %parameters for the dictionary learning +SMALL.DL(2) = SMALL_learn(SMALL.Problem,SMALL.DL(2)); %learn dictionary + +% learn with random initialisation and tropp decorrelation +SMALL.DL(3).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','tropp','coherence',minCoherence); %parameters for the dictionary learning +SMALL.DL(3) = SMALL_learn(SMALL.Problem,SMALL.DL(3)); %learn dictionary + +% Learn with dct initialisation and no decorrelation +SMALL.DL(4).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','none','initdict',dctDict); %parameters for the dictionary learning +SMALL.DL(4) = SMALL_learn(SMALL.Problem,SMALL.DL(4)); %learn dictionary + +% learn with dct initialisation and mailhe decorrelation +SMALL.DL(5).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','mailhe','coherence',minCoherence,'initdict',dctDict); %parameters for the dictionary learning +SMALL.DL(5) = SMALL_learn(SMALL.Problem,SMALL.DL(5)); %learn dictionary + +% learn with dct initialisation and tropp decorrelation +SMALL.DL(6).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','tropp','coherence',minCoherence,'initdict',dctDict); %parameters for the dictionary learning +SMALL.DL(6) = SMALL_learn(SMALL.Problem,SMALL.DL(6)); %learn dictionary + +% Learn with gabor initialisation and no decorrelation +SMALL.DL(7).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','none','initdict',gaborDict); %parameters for the dictionary learning +SMALL.DL(7) = SMALL_learn(SMALL.Problem,SMALL.DL(7)); %learn dictionary + +% learn with gabor initialisation and mailhe decorrelation +SMALL.DL(8).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','mailhe','coherence',minCoherence,'initdict',gaborDict); %parameters for the dictionary learning +SMALL.DL(8) = SMALL_learn(SMALL.Problem,SMALL.DL(8)); %learn dictionary + +% learn with gabor initialisation and tropp decorrelation +SMALL.DL(9).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','tropp','coherence',minCoherence,'initdict',gaborDict); %parameters for the dictionary learning +SMALL.DL(9) = SMALL_learn(SMALL.Problem,SMALL.DL(9)); %learn dictionary + +%% Test mailhe dictionary update +name = dicUpdate{2}; %use mailhe update +SMALL.DL(10:18) = SMALL_init_DL(toolbox,name); %create dictionary learning structure + +% learn with random initialisation and no decorrelation +SMALL.DL(10).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','none'); %parameters for the dictionary learning +SMALL.DL(10) = SMALL_learn(SMALL.Problem,SMALL.DL(10)); %learn dictionary + +% learn with random initialisation and mailhe decorrelation +SMALL.DL(11).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','mailhe','coherence',minCoherence); %parameters for the dictionary learning +SMALL.DL(11) = SMALL_learn(SMALL.Problem,SMALL.DL(11)); %learn dictionary + +% learn with random initialisation and tropp decorrelation +SMALL.DL(12).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','tropp','coherence',minCoherence); %parameters for the dictionary learning +SMALL.DL(12) = SMALL_learn(SMALL.Problem,SMALL.DL(12)); %learn dictionary + +% Learn with dct initialisation and no decorrelation +SMALL.DL(13).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','none','initdict',dctDict); %parameters for the dictionary learning +SMALL.DL(13) = SMALL_learn(SMALL.Problem,SMALL.DL(13)); %learn dictionary + +% learn with dct initialisation and mailhe decorrelation +SMALL.DL(14).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','mailhe','coherence',minCoherence,'initdict',dctDict); %parameters for the dictionary learning +SMALL.DL(14) = SMALL_learn(SMALL.Problem,SMALL.DL(14)); %learn dictionary + +% learn with dct initialisation and tropp decorrelation +SMALL.DL(15).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','tropp','coherence',minCoherence,'initdict',dctDict); %parameters for the dictionary learning +SMALL.DL(15) = SMALL_learn(SMALL.Problem,SMALL.DL(15)); %learn dictionary + +% Learn with gabor initialisation and no decorrelation +SMALL.DL(16).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','none','initdict',gaborDict); %parameters for the dictionary learning +SMALL.DL(16) = SMALL_learn(SMALL.Problem,SMALL.DL(16)); %learn dictionary + +% learn with gabor initialisation and mailhe decorrelation +SMALL.DL(17).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','mailhe','coherence',minCoherence,'initdict',gaborDict); %parameters for the dictionary learning +SMALL.DL(17) = SMALL_learn(SMALL.Problem,SMALL.DL(17)); %learn dictionary + +% learn with gabor initialisation and tropp decorrelation +SMALL.DL(18).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','tropp','coherence',minCoherence,'initdict',gaborDict); %parameters for the dictionary learning +SMALL.DL(18) = SMALL_learn(SMALL.Problem,SMALL.DL(18)); %learn dictionary + +%% Evaluate coherence and snr of representation for the various methods +sigNoiseRatio = zeros(18,1); +mu = zeros(18,1); +for i=1:18 + SMALL.Problem.A = SMALL.DL(i).D; + tempSolver = SMALL_solve(SMALL.Problem,solver); + sigNoiseRatio(i) = snr(SMALL.Problem.b,SMALL.DL(i).D*tempSolver.solution); + dic(i) = dictionary(SMALL.DL(i).D); + mu(i) = dic(i).coherence; +end + +%% Plot results +minMu = sqrt((dictSize-blockSize)/(blockSize*(dictSize-1))); +maxSNR = max(sigNoiseRatio); + +figure, subplot(2,2,1) +snrMat = buffer(sigNoiseRatio(1:9),3); +bar(snrMat'); +title('SNR - KSVD Update') +xlabel('Initial dictionary') +ylabel('SNR (dB)') +set(gca,'XTickLabel',{'data','dct','gabor'},'YLim',[0 maxSNR+1]); +legend('none','Mailhe','Tropp') +grid on + +subplot(2,2,2), grid on +snrMat = buffer(sigNoiseRatio(10:18),3); +bar(snrMat'); +title('SNR - Mailhe Update') +xlabel('Initial dictionary') +ylabel('SNR (dB)') +set(gca,'XTickLabel',{'data','dct','gabor'},'YLim',[0 maxSNR+1]); +legend('none','Mailhe','Tropp') +grid on + +subplot(2,2,3), hold on, grid on +title('Coherence - KSVD Update') +muMat = buffer(mu(1:9),3); +line([0.5 3.5],[1 1],'Color','r'); +bar(muMat'); +line([0.5 3.5],[minMu minMu],'Color','k'); +set(gca,'XTick',1:3,'XTickLabel',{'data','dct','gabor'},'YLim',[0 1.05]) +legend('\mu_{max}','none','Mailhe','Tropp','\mu_{min}') +ylabel('\mu') +xlabel('Initial dictionary') + +subplot(2,2,4), hold on, grid on +title('Coherence - Mailhe Update') +muMat = buffer(mu(10:18),3); +line([0.5 3.5],[1 1],'Color','r'); +bar(muMat'); +line([0.5 3.5],[minMu minMu],'Color','k'); +set(gca,'XTick',1:3,'XTickLabel',{'data','dct','gabor'},'YLim',[0 1.05]) +legend('\mu_{max}','none','Mailhe','Tropp','\mu_{min}') +ylabel('\mu') +xlabel('Initial dictionary')
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/util/SMALL_ImgDeNoiseResult.m.orig Wed Aug 31 10:43:32 2011 +0100 @@ -0,0 +1,50 @@ +function SMALL_ImgDeNoiseResult(SMALL) +%% Represents the results of Dictionary Learning for Image denoising +% +% Function gets as input SMALL structure and plots Image Denoise +% results: Original Image, Noisy Image and for learned dictionaries and +% denoised images +% + +% Centre for Digital Music, Queen Mary, University of London. +% This file copyright 2010 Ivan Damnjanovic. +% +% This program is free software; you can redistribute it and/or +% modify it under the terms of the GNU General Public License as +% published by the Free Software Foundation; either version 2 of the +% License, or (at your option) any later version. See the file +% COPYING included with this distribution for more information. +%% + + +figure('Name', sprintf('Image %s (training set size- %d, sigma - %d)',SMALL.Problem.name, SMALL.Problem.n, SMALL.Problem.sigma)); + +m=size(SMALL.solver,2)+1; +maxval=SMALL.Problem.maxval; +im=SMALL.Problem.Original; +imnoise=SMALL.Problem.Noisy; + +subplot(2, m, 1); imagesc(im/maxval);colormap(gray);axis off; axis image; % Set aspect ratio to obtain square pixels +title('Original image'); + +subplot(2,m,m+1); imagesc(imnoise/maxval);axis off; axis image; +title(sprintf('Noisy image, PSNR = %.2fdB', SMALL.Problem.noisy_psnr )); + +for i=2:m + + subplot(2, m, i); imagesc(SMALL.solver(i-1).reconstructed.Image/maxval);axis off; axis image; + title(sprintf('%s Denoised image, PSNR: %.2f dB in %.2f s',... + SMALL.DL(i-1).name, SMALL.solver(i-1).reconstructed.psnr, SMALL.solver(i-1).time ),'Interpreter','none'); + if strcmpi(SMALL.DL(i-1).name,'ksvds') + D = kron(SMALL.Problem.basedict{2},SMALL.Problem.basedict{1})*SMALL.DL(i-1).D; + else + D = SMALL.DL(i-1).D; + end + dictimg = SMALL_showdict(D,SMALL.Problem.blocksize,... + round(sqrt(size(D,2))),round(sqrt(size(D,2))),'lines','highcontrast'); + + subplot(2,m,m+i);imagesc(dictimg);axis off; axis image; + title(sprintf('%s dictionary in %.2f s',... + SMALL.DL(i-1).name, SMALL.DL(i-1).time),'Interpreter','none'); + +end