Mercurial > hg > smallbox
changeset 153:af307f247ac7 ivand_dev
Example scripts for Two Step Dictionary Learning - Image Denoising experiments.
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Fri, 29 Jul 2011 12:35:52 +0100 |
parents | 485747bf39e0 |
children | 0de08f68256b a4d0977d4595 |
files | DL/two-step DL/SMALL_two_step_DL.m examples/Image Denoising/SMALL_ImgDenoise_DL_test_KSVDvsRLSDLAvsTwoStepMOD.m examples/Image Denoising/SMALL_ImgDenoise_DL_test_KSVDvsTwoStepKSVD.m examples/Image Denoising/SMALL_ImgDenoise_DL_test_TwoStep_KSVD_MOD_OLS_Mailhe.m |
diffstat | 4 files changed, 530 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/DL/two-step DL/SMALL_two_step_DL.m Thu Jul 28 15:49:32 2011 +0100 +++ b/DL/two-step DL/SMALL_two_step_DL.m Fri Jul 29 12:35:52 2011 +0100 @@ -85,7 +85,7 @@ % show dictonary every specified number of iterations -if (isfield(DL.param,'show_dict')) +if isfield(DL.param,'show_dict') show_dictionary=1; show_iter=DL.param.show_dict; else @@ -100,19 +100,22 @@ tmpTraining = Problem.b1; Problem.b1 = sig; -Problem = rmfield(Problem, 'reconstruct'); +if isfield(Problem,'reconstruct') + Problem = rmfield(Problem, 'reconstruct'); +end solver.profile = 0; % main loop % for i = 1:iternum + Problem.A = dico; solver = SMALL_solve(Problem, solver); [dico, solver.solution] = dico_update(dico, sig, solver.solution, ... typeUpdate, flow, learningRate); if (decorrelate) dico = dico_decorr(dico, mu, solver.solution); end - Problem.A = dico; + if ((show_dictionary)&&(mod(i,show_iter)==0)) dictimg = SMALL_showdict(dico,[8 8],... round(sqrt(size(dico,2))),round(sqrt(size(dico,2))),'lines','highcontrast'); @@ -124,4 +127,16 @@ Problem.b1 = tmpTraining; DL.D = dico; +end + +function Y = colnorms_squared(X) + +% compute in blocks to conserve memory +Y = zeros(1,size(X,2)); +blocksize = 2000; +for i = 1:blocksize:size(X,2) + blockids = i : min(i+blocksize-1,size(X,2)); + Y(blockids) = sum(X(:,blockids).^2); +end + end \ No newline at end of file
--- a/examples/Image Denoising/SMALL_ImgDenoise_DL_test_KSVDvsRLSDLAvsTwoStepMOD.m Thu Jul 28 15:49:32 2011 +0100 +++ b/examples/Image Denoising/SMALL_ImgDenoise_DL_test_KSVDvsRLSDLAvsTwoStepMOD.m Fri Jul 29 12:35:52 2011 +0100 @@ -47,7 +47,7 @@ % Here we loop through different noise levels and images -for noise_ind=2:2 +for noise_ind=4:4 for im_num=1:1 % Defining Image Denoising Problem as Dictionary Learning @@ -171,7 +171,6 @@ 'initdict', SMALL.Problem.initdict,... 'dictsize', SMALL.Problem.p,... 'iternum', 40,... - 'mu', 0.7,... 'show_dict', 1); % Learn the dictionary
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/examples/Image Denoising/SMALL_ImgDenoise_DL_test_KSVDvsTwoStepKSVD.m Fri Jul 29 12:35:52 2011 +0100 @@ -0,0 +1,202 @@ +%% Dictionary Learning for Image Denoising - KSVD vs Recursive Least Squares +% +% This file contains an example of how SMALLbox can be used to test different +% dictionary learning techniques in Image Denoising problem. +% It calls generateImageDenoiseProblem that will let you to choose image, +% add noise and use noisy image to generate training set for dictionary +% learning. +% Two dictionary learning techniques were compared: +% - KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient +% Implementation of the K-SVD Algorithm using Batch Orthogonal +% Matching Pursuit", Technical Report - CS, Technion, April 2008. +% - RLS-DLA - Skretting, K.; Engan, K.; , "Recursive Least Squares +% Dictionary Learning Algorithm," Signal Processing, IEEE Transactions on, +% vol.58, no.4, pp.2121-2130, April 2010 +% + + +% Centre for Digital Music, Queen Mary, University of London. +% This file copyright 2011 Ivan Damnjanovic. +% +% This program is free software; you can redistribute it and/or +% modify it under the terms of the GNU General Public License as +% published by the Free Software Foundation; either version 2 of the +% License, or (at your option) any later version. See the file +% COPYING included with this distribution for more information. +% +%% + + + +% If you want to load the image outside of generateImageDenoiseProblem +% function uncomment following lines. This can be useful if you want to +% denoise more then one image for example. +% Here we are loading test_image.mat that contains structure with 5 images : lena, +% barbara,boat, house and peppers. +clear; +TMPpath=pwd; +FS=filesep; +[pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m')); +cd([pathstr1,FS,'data',FS,'images']); +load('test_image.mat'); +cd(TMPpath); + +% Deffining the noise levels that we want to test + +noise_level=[10 20 25 50 100]; + +% Here we loop through different noise levels and images + +for noise_ind=1:1 +for im_num=1:1 + +% Defining Image Denoising Problem as Dictionary Learning +% Problem. As an input we set the number of training patches. + +SMALL.Problem = generateImageDenoiseProblem(test_image(im_num).i, 40000, '',256, noise_level(noise_ind)); +SMALL.Problem.name=int2str(im_num); + +Edata=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain; +maxatoms = floor(prod(SMALL.Problem.blocksize)/2); + +% results structure is to store all results + +results(noise_ind,im_num).noisy_psnr=SMALL.Problem.noisy_psnr; + +%% +% Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary +% Ron Rubinstein implementation + +% Initialising Dictionary structure +% Setting Dictionary structure fields (toolbox, name, param, D and time) +% to zero values + +SMALL.DL(1)=SMALL_init_DL(); + +% Defining the parameters needed for dictionary learning + +SMALL.DL(1).toolbox = 'KSVD'; +SMALL.DL(1).name = 'ksvd'; + +% Defining the parameters for KSVD +% In this example we are learning 256 atoms in 20 iterations, so that +% every patch in the training set can be represented with target error in +% L2-norm (Edata) +% Type help ksvd in MATLAB prompt for more options. + + +SMALL.DL(1).param=struct(... + 'Edata', Edata,... + 'initdict', SMALL.Problem.initdict,... + 'dictsize', SMALL.Problem.p,... + 'exact', 1, ... + 'iternum', 20,... + 'memusage', 'high'); + +% Learn the dictionary + +SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1)); + +% Set SMALL.Problem.A dictionary +% (backward compatiblity with SPARCO: solver structure communicate +% only with Problem structure, ie no direct communication between DL and +% solver structures) + +SMALL.Problem.A = SMALL.DL(1).D; +SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem); + +%% +% Initialising solver structure +% Setting solver structure fields (toolbox, name, param, solution, +% reconstructed and time) to zero values + +SMALL.solver(1)=SMALL_init_solver; + +% Defining the parameters needed for image denoising + +SMALL.solver(1).toolbox='ompbox'; +SMALL.solver(1).name='omp2'; +SMALL.solver(1).param=struct(... + 'epsilon',Edata,... + 'maxatoms', maxatoms); + +% Denoising the image - find the sparse solution in the learned +% dictionary for all patches in the image and the end it uses +% reconstruction function to reconstruct the patches and put them into a +% denoised image + +SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1)); + +% Show PSNR after reconstruction + +SMALL.solver(1).reconstructed.psnr + +%% +% Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary +% Boris Mailhe ksvd update implentation omp is the same as with Rubinstein +% implementation + + +% Initialising solver structure +% Setting solver structure fields (toolbox, name, param, solution, +% reconstructed and time) to zero values + +SMALL.solver(2)=SMALL_init_solver; + +% Defining the parameters needed for image denoising + +SMALL.solver(2).toolbox='ompbox'; +SMALL.solver(2).name='omp2'; +SMALL.solver(2).param=struct(... + 'epsilon',Edata,... + 'maxatoms', maxatoms); + +% Initialising Dictionary structure +% Setting Dictionary structure fields (toolbox, name, param, D and time) +% to zero values + +SMALL.DL(2)=SMALL_init_DL('TwoStepDL', 'KSVD', '', 1); + + +% Defining the parameters for KSVD +% In this example we are learning 256 atoms in 20 iterations, so that +% every patch in the training set can be represented with target error in +% L2-norm (EData) +% Type help ksvd in MATLAB prompt for more options. + + +SMALL.DL(2).param=struct(... + 'solver', SMALL.solver(2),... + 'initdict', SMALL.Problem.initdict,... + 'dictsize', SMALL.Problem.p,... + 'iternum', 20,... + 'show_dict', 1); + +% Learn the dictionary + +SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2)); + +% Set SMALL.Problem.A dictionary +% (backward compatiblity with SPARCO: solver structure communicate +% only with Problem structure, ie no direct communication between DL and +% solver structures) + +SMALL.Problem.A = SMALL.DL(2).D; +SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem); + +% Denoising the image - find the sparse solution in the learned +% dictionary for all patches in the image and the end it uses +% reconstruction function to reconstruct the patches and put them into a +% denoised image + +SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2)); + + +%% show results %% + +SMALL_ImgDeNoiseResult(SMALL); + +clear SMALL; +end +end +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/examples/Image Denoising/SMALL_ImgDenoise_DL_test_TwoStep_KSVD_MOD_OLS_Mailhe.m Fri Jul 29 12:35:52 2011 +0100 @@ -0,0 +1,309 @@ +%% Dictionary Learning for Image Denoising - KSVD vs Recursive Least Squares +% +% This file contains an example of how SMALLbox can be used to test different +% dictionary learning techniques in Image Denoising problem. +% It calls generateImageDenoiseProblem that will let you to choose image, +% add noise and use noisy image to generate training set for dictionary +% learning. +% Two dictionary learning techniques were compared: +% - KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient +% Implementation of the K-SVD Algorithm using Batch Orthogonal +% Matching Pursuit", Technical Report - CS, Technion, April 2008. +% - RLS-DLA - Skretting, K.; Engan, K.; , "Recursive Least Squares +% Dictionary Learning Algorithm," Signal Processing, IEEE Transactions on, +% vol.58, no.4, pp.2121-2130, April 2010 +% + + +% Centre for Digital Music, Queen Mary, University of London. +% This file copyright 2011 Ivan Damnjanovic. +% +% This program is free software; you can redistribute it and/or +% modify it under the terms of the GNU General Public License as +% published by the Free Software Foundation; either version 2 of the +% License, or (at your option) any later version. See the file +% COPYING included with this distribution for more information. +% +%% + + + +% If you want to load the image outside of generateImageDenoiseProblem +% function uncomment following lines. This can be useful if you want to +% denoise more then one image for example. +% Here we are loading test_image.mat that contains structure with 5 images : lena, +% barbara,boat, house and peppers. +clear; +TMPpath=pwd; +FS=filesep; +[pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m')); +cd([pathstr1,FS,'data',FS,'images']); +load('test_image.mat'); +cd(TMPpath); + +% Deffining the noise levels that we want to test + +noise_level=[10 20 25 50 100]; + +% Here we loop through different noise levels and images + +for noise_ind=2:2 +for im_num=2:2 + +% Defining Image Denoising Problem as Dictionary Learning +% Problem. As an input we set the number of training patches. + +SMALL.Problem = generateImageDenoiseProblem(test_image(im_num).i, 40000, '',256, noise_level(noise_ind)); +SMALL.Problem.name=int2str(im_num); + +Edata=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain; +maxatoms = floor(prod(SMALL.Problem.blocksize)/2); + + +%% +% Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary +% Boris Mailhe ksvd update implentation omp is the same as with Rubinstein +% implementation + + +% Initialising solver structure +% Setting solver structure fields (toolbox, name, param, solution, +% reconstructed and time) to zero values + +SMALL.solver(1)=SMALL_init_solver; + +% Defining the parameters needed for image denoising + +SMALL.solver(1).toolbox='ompbox'; +SMALL.solver(1).name='omp2'; +SMALL.solver(1).param=struct(... + 'epsilon',Edata,... + 'maxatoms', maxatoms); + +% Initialising Dictionary structure +% Setting Dictionary structure fields (toolbox, name, param, D and time) +% to zero values + +SMALL.DL(1)=SMALL_init_DL('TwoStepDL', 'KSVD', '', 1); + + +% Defining the parameters for KSVD +% In this example we are learning 256 atoms in 20 iterations, so that +% every patch in the training set can be represented with target error in +% L2-norm (EData) +% Type help ksvd in MATLAB prompt for more options. + + +SMALL.DL(1).param=struct(... + 'solver', SMALL.solver(1),... + 'initdict', SMALL.Problem.initdict,... + 'dictsize', SMALL.Problem.p,... + 'iternum', 20,... + 'show_dict', 1); + +% Learn the dictionary + +SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1)); + +% Set SMALL.Problem.A dictionary +% (backward compatiblity with SPARCO: solver structure communicate +% only with Problem structure, ie no direct communication between DL and +% solver structures) + +SMALL.Problem.A = SMALL.DL(1).D; +SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem); + +% Denoising the image - find the sparse solution in the learned +% dictionary for all patches in the image and the end it uses +% reconstruction function to reconstruct the patches and put them into a +% denoised image + +SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1)); + +%% +% Use MOD Dictionary Learning Algorithm to Learn overcomplete dictionary +% Boris Mailhe MOD update implentation omp is the Ron Rubinstein +% implementation + + +% Initialising solver structure +% Setting solver structure fields (toolbox, name, param, solution, +% reconstructed and time) to zero values + +SMALL.solver(2)=SMALL_init_solver; + +% Defining the parameters needed for image denoising + +SMALL.solver(2).toolbox='ompbox'; +SMALL.solver(2).name='omp2'; +SMALL.solver(2).param=struct(... + 'epsilon',Edata,... + 'maxatoms', maxatoms); + +% Initialising Dictionary structure +% Setting Dictionary structure fields (toolbox, name, param, D and time) +% to zero values + +SMALL.DL(2)=SMALL_init_DL('TwoStepDL', 'MOD', '', 1); + + +% Defining the parameters for MOD +% In this example we are learning 256 atoms in 20 iterations, so that +% every patch in the training set can be represented with target error in +% L2-norm (EData) +% Type help ksvd in MATLAB prompt for more options + +SMALL.DL(2).param=struct(... + 'solver', SMALL.solver(2),... + 'initdict', SMALL.Problem.initdict,... + 'dictsize', SMALL.Problem.p,... + 'iternum', 20,... + 'show_dict', 1); + +% Learn the dictionary + +SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2)); + +% Set SMALL.Problem.A dictionary +% (backward compatiblity with SPARCO: solver structure communicate +% only with Problem structure, ie no direct communication between DL and +% solver structures) + +SMALL.Problem.A = SMALL.DL(2).D; +SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem); + +% Denoising the image - find the sparse solution in the learned +% dictionary for all patches in the image and the end it uses +% reconstruction function to reconstruct the patches and put them into a +% denoised image + +SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2)); +%% +% Use OLS Dictionary Learning Algorithm to Learn overcomplete dictionary +% Boris Mailhe ksvd update implentation omp is the Ron Rubinstein +% implementation + + +% Initialising solver structure +% Setting solver structure fields (toolbox, name, param, solution, +% reconstructed and time) to zero values + +SMALL.solver(3)=SMALL_init_solver; + +% Defining the parameters needed for image denoising + +SMALL.solver(3).toolbox='ompbox'; +SMALL.solver(3).name='omp2'; +SMALL.solver(3).param=struct(... + 'epsilon',Edata,... + 'maxatoms', maxatoms); + +% Initialising Dictionary structure +% Setting Dictionary structure fields (toolbox, name, param, D and time) +% to zero values + +SMALL.DL(3)=SMALL_init_DL('TwoStepDL', 'ols', '', 1); + + +% Defining the parameters for KSVD +% In this example we are learning 256 atoms in 20 iterations, so that +% every patch in the training set can be represented with target error in +% L2-norm (EData) +% Type help ksvd in MATLAB prompt for more options. + + +SMALL.DL(3).param=struct(... + 'solver', SMALL.solver(3),... + 'initdict', SMALL.Problem.initdict,... + 'dictsize', SMALL.Problem.p,... + 'iternum', 20,... + 'learningRate', 0.1,... + 'show_dict', 1); + +% Learn the dictionary + +SMALL.DL(3) = SMALL_learn(SMALL.Problem, SMALL.DL(3)); + +% Set SMALL.Problem.A dictionary +% (backward compatiblity with SPARCO: solver structure communicate +% only with Problem structure, ie no direct communication between DL and +% solver structures) + +SMALL.Problem.A = SMALL.DL(3).D; +SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem); + +% Denoising the image - find the sparse solution in the learned +% dictionary for all patches in the image and the end it uses +% reconstruction function to reconstruct the patches and put them into a +% denoised image + +SMALL.solver(3)=SMALL_solve(SMALL.Problem, SMALL.solver(3)); +%% +% Use Mailhe Dictionary Learning Algorithm to Learn overcomplete dictionary +% Boris Mailhe ksvd update implentation omp is the Ron Rubinstein +% implementation + + +% Initialising solver structure +% Setting solver structure fields (toolbox, name, param, solution, +% reconstructed and time) to zero values + +SMALL.solver(4)=SMALL_init_solver; + +% Defining the parameters needed for image denoising + +SMALL.solver(4).toolbox='ompbox'; +SMALL.solver(4).name='omp2'; +SMALL.solver(4).param=struct(... + 'epsilon',Edata,... + 'maxatoms', maxatoms); + +% Initialising Dictionary structure +% Setting Dictionary structure fields (toolbox, name, param, D and time) +% to zero values + +SMALL.DL(4)=SMALL_init_DL('TwoStepDL', 'mailhe', '', 1); + + +% Defining the parameters for KSVD +% In this example we are learning 256 atoms in 20 iterations, so that +% every patch in the training set can be represented with target error in +% L2-norm (EData) +% Type help ksvd in MATLAB prompt for more options. + + +SMALL.DL(4).param=struct(... + 'solver', SMALL.solver(4),... + 'initdict', SMALL.Problem.initdict,... + 'dictsize', SMALL.Problem.p,... + 'iternum', 20,... + 'learningRate', 2,... + 'show_dict', 1); + +% Learn the dictionary + +SMALL.DL(4) = SMALL_learn(SMALL.Problem, SMALL.DL(4)); + +% Set SMALL.Problem.A dictionary +% (backward compatiblity with SPARCO: solver structure communicate +% only with Problem structure, ie no direct communication between DL and +% solver structures) + +SMALL.Problem.A = SMALL.DL(4).D; +SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem); + +% Denoising the image - find the sparse solution in the learned +% dictionary for all patches in the image and the end it uses +% reconstruction function to reconstruct the patches and put them into a +% denoised image + +SMALL.solver(4)=SMALL_solve(SMALL.Problem, SMALL.solver(4)); + +%% show results %% + +SMALL_ImgDeNoiseResult(SMALL); + +%clear SMALL; +end +end +