Mercurial > hg > smallbox
changeset 184:8fc38e8df8c6 danieleb
Minor edits
author | Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk> |
---|---|
date | Fri, 27 Jan 2012 13:18:50 +0000 |
parents | 0d7a81655ef2 |
children | 2f5ce7c8792a f1e601cc916d |
files | util/DisplayFigureTitle.m util/classes/@dictionary/dictionary.m util/classes/@dictionary/plotcumcoherence.m util/classes/@dictionary/plotcumcoherencebounds.m util/classes/dictionaryMatrices/iterativeprojections.m util/classes/dictionaryMatrices/rotatematrix.m |
diffstat | 6 files changed, 83 insertions(+), 57 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/util/DisplayFigureTitle.m Fri Jan 27 13:18:50 2012 +0000 @@ -0,0 +1,5 @@ +function DisplayFigureTitle(title) + +set(gcf,'Units','Normalized'); +txh = annotation(gcf,'textbox',[0.4,0.95,0.2,0.05]); +set(txh,'String',title,'LineStyle','none','HorizontalAlignment','center');
--- a/util/classes/@dictionary/dictionary.m Fri Jan 27 13:15:11 2012 +0000 +++ b/util/classes/@dictionary/dictionary.m Fri Jan 27 13:18:50 2012 +0000 @@ -31,7 +31,7 @@ switch lower(phi) case 'dct' obj.phi = dctmatrix(len,nAtoms); - case 'grassmanian' + case 'grassmannian' obj.phi = grassmanian(len,nAtoms); otherwise obj.phi = MatrixEnsemble(len,nAtoms,phi); @@ -41,8 +41,7 @@ obj.name = lower(phi); end end - end - + end %% Dependent properties function redundancy = get.redundancy(obj) redundancy = obj.nAtoms/obj.len; @@ -63,8 +62,7 @@ %% Operations function obj = normalize(obj) obj.phi = normcol(obj.phi); - end - + end %% Visualization function image(obj) %Image of the dictionary @@ -101,8 +99,7 @@ plot(imag(obj.phi(:,n))); title(['Atom number ' num2str(n) '/' num2str(size(obj.phi,2)) ' - Imaginary']); end - end - + end function movie(obj) %Movie of the basis for i=1:size(obj.phi,2)
--- a/util/classes/@dictionary/plotcumcoherence.m Fri Jan 27 13:15:11 2012 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,42 +0,0 @@ -function plotcumcoherence(obj,mu) -if ~exist('mu','var') || isempty(mu), mu = cumcoherence(obj); end -[d N] = size(obj.phi); - -% Plot cumulative coherence with lower and upper bounds -mumin = (1:d)*sqrt((N-d)/(d*(N-1))); -mumax = (1:d); -figure, -subplot(1,6,1:2) -hold on, grid on -plot(1,mumax(1),'k-s'); -plot(1,mu(1),'ko'); -plot(1,mumin(1),'k-d') -set(gca,'XScale','log','YScale','log'); -axis tight -ylabel('\mu'); -ylim([mumin(1) 10]) - -subplot(1,6,3:6) -hold on, grid on -plot(2:d,mumax(2:end),'k-s'); -plot(2:d,mu(2:end),'k-o'); -plot(2:d,mumin(2:end),'k-d'); -set(gca,'XScale','log','YScale','log'); -axis tight -xlabel('k'); -ylabel('\mu(k)'); -ylim([mumin(1) 10]) - -% Plot recovery bounds -plot(2:d,1-mu(1:d-1),'r-o') -plot(2:d,1-mumin(1:d-1)','r-d') -plot([2 d],[1/3 1/3],'b'); -legend('\mu_{max}(k)','\mu(k)','\mu_{min}(k)','Exact-Sparse \mu','Exact-Sparse \mu_{min}','Sparse'); - - -% v = conv(mu,[1 1]); -% ind = find(v<1, 1, 'last'); -% -% line([ind ind], [min(mu) max(mu)],'Color','red'); -% title(['Minimum allowed sparsity (Tanner):' num2str(ind/obj.len)]); -end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/util/classes/@dictionary/plotcumcoherencebounds.m Fri Jan 27 13:18:50 2012 +0000 @@ -0,0 +1,65 @@ +function plotcumcoherencebounds(obj) + +[d N] = size(obj.phi); + +mu1 = cumcoherence(obj,1); +mu2 = cumcoherence(obj,2); +mu1_min = (1:d)*sqrt((N-d)/(d*(N-1))); + +figure, subplot(2,1,1) +hold on, grid on +plot(1:d,mu1,'k-') +plot(1:d,mu2,'k--') +plot(1:d,mu1_min,'b-.') +set(gca,'XScale','log','YScale','log'); +axis tight +ylabel('p-cumulative coherence') +xlabel('k') +legend('\mu_1(k)','\mu_2(k)','\mu_{1_{min}}(k)') + +% temp = conv(mu1,[1 1]); +% kMax = find(temp<1,1,'last'); +% title(['Worst case bound: k_{max} = ' num2str(kMax)]) +% +% % subplot(2,1,2) +% p_BP_fails = exp(-1./(8*mu1(1)^2*(1:d))); +% p_TH_fails = exp(-1./(128*mu2.^2)); +% plot(1:d,p_BP_fails,'k-+'); +% plot(1:d,p_TH_fails,'k-o'); +% legend('P(BP fails)','P(TH fails)'); + +% % Plot cumulative coherence with lower and upper bounds +% mumin = (1:d)*sqrt((N-d)/(d*(N-1))); +% mumax = (1:d); +% figure, +% subplot(1,6,1:2) +% hold on, grid on +% plot(1,mumax(1),'k-s'); +% plot(1,mu(1),'ko'); +% plot(1,mumin(1),'k-d') +% +% +% subplot(1,6,3:6) +% hold on, grid on +% plot(2:d,mumax(2:end),'k-s'); +% plot(2:d,mu(2:end),'k-o'); +% plot(2:d,mumin(2:end),'k-d'); +% set(gca,'XScale','log','YScale','log'); +% axis tight +% xlabel('k'); +% ylabel('\mu(k)'); +% ylim([mumin(1) 10]) +% +% % Plot recovery bounds +% plot(2:d,1-mu(1:d-1),'r-o') +% plot(2:d,1-mumin(1:d-1)','r-d') +% plot([2 d],[1/3 1/3],'b'); +% legend('\mu_{max}(k)','\mu(k)','\mu_{min}(k)','Exact-Sparse \mu','Exact-Sparse \mu_{min}','Sparse'); + + +% v = conv(mu,[1 1]); +% ind = find(v<1, 1, 'last'); +% +% line([ind ind], [min(mu) max(mu)],'Color','red'); +% title(['Minimum allowed sparsity (Tanner):' num2str(ind/obj.len)]); +end
--- a/util/classes/dictionaryMatrices/iterativeprojections.m Fri Jan 27 13:15:11 2012 +0000 +++ b/util/classes/dictionaryMatrices/iterativeprojections.m Fri Jan 27 13:18:50 2012 +0000 @@ -32,7 +32,7 @@ % calculate gram matrix G = dic'*dic; - % project into the structural constraint set + % project onto the structural constraint set H = zeros(size(G)); %initialise matrix ind1 = find(abs(G(:))<=mu); %find elements smaller than mu ind2 = find(abs(G(:))>mu); %find elements bigger than mu
--- a/util/classes/dictionaryMatrices/rotatematrix.m Fri Jan 27 13:15:11 2012 +0000 +++ b/util/classes/dictionaryMatrices/rotatematrix.m Fri Jan 27 13:18:50 2012 +0000 @@ -1,5 +1,5 @@ function [Dhat cost W] = rotatematrix(D,Phi,method,param) -% +% % % % REFERENCE @@ -90,24 +90,25 @@ param.nIter = 300; %number of iterations param.step = 0.001; %step size param.mu = 0.01; %regularization factor (for tangent method) -methods = {'unconstrained','tangent','linesearchlie','conjgradlie'}; +methods = {'tangent','linesearchlie','conjgradlie'}; Phi = randn(n,m); %initial dictionary Qtrue = expm(skew(randn(n))); %rotation matrix D = Qtrue*Phi; %target dictionary cost = zeros(param.nIter,length(methods)); +times = zeros(param.nIter,length(methods)); for iIter=1:length(methods) tic [~, cost(:,iIter)] = rotatematrix(D,Phi,methods{iIter},param); - time = toc; - sprintf('Method %s completed in %f seconds \n',methods{iIter},time) + times(:,iIter) = linspace(0,toc,param.nIter); + sprintf('Method %s completed in %f seconds \n',methods{iIter},toc) end -figure, plot(cost) -set(gca,'XScale','log','Yscale','log') +figure, plot(times,cost) +set(gca,'XScale','lin','Yscale','log') legend(methods) grid on -xlabel('number of iterations') +xlabel('time (sec)') ylabel('J(W)') end