Mercurial > hg > smallbox
changeset 163:855025f4c779 ivand_dev
renaiming small_cgp to small_pcgp
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Wed, 07 Sep 2011 14:16:50 +0100 |
parents | f42aa8bcb82f |
children | 4205744092e6 |
files | examples/ALPS solvers tests/SMALL_solver_test_ALPS.m examples/Image Denoising/SMALL_ImgDenoise_DL_test_KSVDvsRLSDLAvsTwoStepMOD.m examples/MajorizationMinimization tests/SMALL_AMT_DL_test_KSVD_MM.m examples/SMALL_solver_test.m examples/SMALL_solver_test_Audio.m solvers/SMALL_pcgp.m |
diffstat | 6 files changed, 118 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/examples/ALPS solvers tests/SMALL_solver_test_ALPS.m Wed Aug 31 12:02:19 2011 +0100 +++ b/examples/ALPS solvers tests/SMALL_solver_test_ALPS.m Wed Sep 07 14:16:50 2011 +0100 @@ -88,7 +88,7 @@ % SMALL Conjugate Gradient test SMALL.solver(i)=SMALL_init_solver; SMALL.solver(i).toolbox='SMALL'; -SMALL.solver(i).name='SMALL_cgp'; +SMALL.solver(i).name='SMALL_pcgp'; % In the following string all parameters except matrix, measurement vector % and size of solution need to be specified. If you are not sure which
--- a/examples/Image Denoising/SMALL_ImgDenoise_DL_test_KSVDvsRLSDLAvsTwoStepMOD.m Wed Aug 31 12:02:19 2011 +0100 +++ b/examples/Image Denoising/SMALL_ImgDenoise_DL_test_KSVDvsRLSDLAvsTwoStepMOD.m Wed Sep 07 14:16:50 2011 +0100 @@ -9,10 +9,7 @@ % - KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient % Implementation of the K-SVD Algorithm using Batch Orthogonal % Matching Pursuit", Technical Report - CS, Technion, April 2008. -% - RLS-DLA - Skretting, K.; Engan, K.; , "Recursive Least Squares -% Dictionary Learning Algorithm," Signal Processing, IEEE Transactions on, -% vol.58, no.4, pp.2121-2130, April 2010 -% + % Centre for Digital Music, Queen Mary, University of London.
--- a/examples/MajorizationMinimization tests/SMALL_AMT_DL_test_KSVD_MM.m Wed Aug 31 12:02:19 2011 +0100 +++ b/examples/MajorizationMinimization tests/SMALL_AMT_DL_test_KSVD_MM.m Wed Sep 07 14:16:50 2011 +0100 @@ -89,7 +89,7 @@ % Defining the parameters needed for sparse representation SMALL.solver(1).toolbox='SMALL'; -SMALL.solver(1).name='SMALL_cgp'; +SMALL.solver(1).name='SMALL_pcgp'; % Here we use mexLasso mode=2, with lambda=2, lambda2=0 and positivity % constrain (type 'help mexLasso' for more information about modes):
--- a/examples/SMALL_solver_test.m Wed Aug 31 12:02:19 2011 +0100 +++ b/examples/SMALL_solver_test.m Wed Sep 07 14:16:50 2011 +0100 @@ -81,7 +81,7 @@ % SMALL Conjugate Gradient test SMALL.solver(i)=SMALL_init_solver; SMALL.solver(i).toolbox='SMALL'; -SMALL.solver(i).name='SMALL_cgp'; +SMALL.solver(i).name='SMALL_pcgp'; % In the following string all parameters except matrix, measurement vector % and size of solution need to be specified. If you are not sure which
--- a/examples/SMALL_solver_test_Audio.m Wed Aug 31 12:02:19 2011 +0100 +++ b/examples/SMALL_solver_test_Audio.m Wed Sep 07 14:16:50 2011 +0100 @@ -61,7 +61,7 @@ SMALL.solver(i)=SMALL_init_solver; SMALL.solver(i).toolbox='SMALL'; -SMALL.solver(i).name='SMALL_cgp'; +SMALL.solver(i).name='SMALL_pcgp'; % In the following string all parameters except matrix, measurement vector % and size of solution need to be specified. If you are not sure which
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/solvers/SMALL_pcgp.m Wed Sep 07 14:16:50 2011 +0100 @@ -0,0 +1,113 @@ +function [A, resF]=SMALL_pcgp(Dict,X, m, maxNumCoef, errorGoal, varargin) +%% Partial Conjugate Gradient Pursuit Multiple vectors sparse representation +% +% Sparse coding of a group of signals based on a given +% dictionary and specified number of atoms to use. +% input arguments: Dict - the dictionary +% X - the signals to represent +% m - number of atoms in Dictionary +% errorGoal - the maximal allowed representation error for +% each signal. +% +% optional: if Dict is function handle then Transpose Dictionary +% handle needs to be specified. +% +% output arguments: A - sparse coefficient matrix. + +% +% Centre for Digital Music, Queen Mary, University of London. +% This file copyright 2009 Ivan Damnjanovic. +% +% This program is free software; you can redistribute it and/or +% modify it under the terms of the GNU General Public License as +% published by the Free Software Foundation; either version 2 of the +% License, or (at your option) any later version. See the file +% COPYING included with this distribution for more information. +% +%% + +% This Dictionary check is based on Thomas Blumensath work in sparsify 0_4 greedy solvers +if isa(Dict,'float') + D =@(z) Dict*z; + Dt =@(z) Dict'*z; +elseif isobject(Dict) + D =@(z) Dict*z; + Dt =@(z) Dict'*z; +elseif isa(Dict,'function_handle') + try + DictT=varargin{1}; + if isa(DictT,'function_handle'); + D=Dict; + Dt=DictT; + else + error('If Dictionary is a function handle,Transpose Dictionary also needs to be a function handle. '); + end + catch + error('If Dictionary is a function handle, Transpose Dictionary needs to be specified. Exiting.'); + end +else + error('Dictionary is of unsupported type. Use explicit matrix, function_handle or object. Exiting.'); +end +%% +%positivity=1; +[n,P]=size(X); + + + +A = sparse(m,size(X,2)); + +for k=1:1:P, + + x = X(:,k); + residual = x; + indx =[]; + j=0; + + + currResNorm = residual'*residual/n; + errGoal=errorGoal*currResNorm; + a = zeros(m,1); + p = zeros(m,1); + + while j < maxNumCoef, + + j = j+1; + dir=Dt(residual); + if exist('positivity','var')&&(positivity==1) + [tmp__, pos]=max(dir); + else + [tmp__, pos]=max(abs(dir)); + end + indx(j)=pos; + + p(indx)=dir(indx); + Dp=D(p); + pDDp=Dp'*Dp; + + if (j==1) + beta=0; + else + beta=-Dp'*residual/pDDp; + end + + alfa=residual'*Dp/pDDp; + a=a+alfa*p; + p(indx)=dir(indx)+beta*p(indx); + + residual=residual-alfa*Dp; + + currResNorm = residual'*residual/n; + if currResNorm<errGoal + fprintf('\nFound exact representation! \n'); + break; + end + end; + if (~isempty(indx)) + resF(k)=currResNorm; + A(indx,k)=a(indx); + end +end; +return; + + +