Mercurial > hg > smallbox
changeset 196:82b0d3f982cb danieleb
Merge
author | danieleb <daniele.barchiesi@eecs.qmul.ac.uk> |
---|---|
date | Wed, 14 Mar 2012 16:31:38 +0000 |
parents | 2f5ce7c8792a (current diff) 9b0595a8478d (diff) |
children | fd0b5d36f6ad |
files | util/classes/@audio/buffer.m |
diffstat | 1 files changed, 76 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/examples/SMALL_DL_test.m Wed Mar 14 16:31:38 2012 +0000 @@ -0,0 +1,76 @@ +function SMALL_DL_test +clear, clc, close all +% Create a 2-dimensional dataset of points that are oriented in 3 +% directions on a x/y plane + +% +% Centre for Digital Music, Queen Mary, University of London. +% This file copyright 2012 Daniele Barchiesi. +% +% This program is free software; you can redistribute it and/or +% modify it under the terms of the GNU General Public License as +% published by the Free Software Foundation; either version 2 of the +% License, or (at your option) any later version. See the file +% COPYING included with this distribution for more information. + +nData = 10000; %number of data +theta = [pi/6 pi/3 4*pi/6]; %angles +nAngles = length(theta); %number of angles +Q = [cos(theta); sin(theta)]; %rotation matrix +X = Q*randmog(nAngles,nData); %training data + +% find principal directions using PCA +XXt = X*X'; %cross correlation matrix +[U ~] = svd(XXt); %svd of XXt + +scale = 3; %scale factor for plots +subplot(1,2,1), hold on +title('Principal Component Analysis') +scatter(X(1,:), X(2,:),'.'); %scatter training data +O = zeros(size(U)); %origin +quiver(O(1,1:2),O(2,1:2),scale*U(1,:),scale*U(2,:),... + 'LineWidth',2,'Color','k') %plot atoms +axis equal %scale axis + +subplot(1,2,2), hold on +title('K-SVD Dictionary') +scatter(X(1,:), X(2,:),'.'); +axis equal + +nAtoms = 3; %number of atoms in the dictionary +nIter = 1; %number of dictionary learning iterations +initDict = normc(randn(2,nAtoms)); %random initial dictionary +O = zeros(size(initDict)); %origin + +% apply dictionary learning algorithm +ksvd_params = struct('data',X,... %training data + 'Tdata',1,... %sparsity level + 'dictsize',nAtoms,... %number of atoms + 'initdict',initDict,...%initial dictionary + 'iternum',10); %number of iterations +DL = SMALL_init_DL('ksvd','ksvd',ksvd_params); %dictionary learning structure +DL.D = initDict; %copy initial dictionary in solution variable +problem = struct('b',X); %copy training data in problem structure + +xdata = DL.D(1,:); +ydata = DL.D(2,:); +qPlot = quiver(O(1,:),O(2,:),scale*initDict(1,:),scale*initDict(2,:),... + 'LineWidth',2,'Color','k','UDataSource','xdata','VDataSource','ydata'); + +for iIter=1:nIter + DL.ksvd_params.initdict = DL.D; + pause + DL = SMALL_learn(problem,DL); %learn dictionary + xdata = scale*DL.D(1,:); + ydata = scale*DL.D(2,:); + refreshdata(gcf,'caller'); +end + + +function X = randmog(m, n) +% RANDMOG - Generate mixture of Gaussians +s = [0.2 2]; +% Choose which Gaussian +G1 = (rand(m, n) < 0.9); +% Make them +X = (G1.*s(1) + (1-G1).*s(2)) .* randn(m,n);