Mercurial > hg > smallbox
changeset 190:759313488e7b luisf_dev
Added two config files for the 2 step dic and learn scripts; removed 'extra' folder; created init script (initial version).
author | luisf <luis.figueira@eecs.qmul.ac.uk> |
---|---|
date | Tue, 13 Mar 2012 17:33:20 +0000 |
parents | 3cc204120431 |
children | d50f5bdbe14c |
files | DL/two-step DL/SMALL_two_step_DL.m SMALLboxInit.m config/SMALL_learn_config.m config/SMALL_two_step_DL_config.m extra/README.txt util/SMALL_learn.m |
diffstat | 6 files changed, 131 insertions(+), 121 deletions(-) [+] |
line wrap: on
line diff
--- a/DL/two-step DL/SMALL_two_step_DL.m Thu Feb 09 17:26:45 2012 +0000 +++ b/DL/two-step DL/SMALL_two_step_DL.m Tue Mar 13 17:33:20 2012 +0000 @@ -30,7 +30,8 @@ % initialize the dictionary % -if (isfield(DL.param,'initdict')) +% todo: check second if statement +if (isfield(DL.param,'initdict')) && ~isempty(DL.param.initdict); if (any(size(DL.param.initdict)==1) && all(iswhole(DL.param.initdict(:)))) dico = sig(:,DL.param.initdict(1:dictsize)); else @@ -110,11 +111,15 @@ for i = 1:iternum Problem.A = dico; solver = SMALL_solve(Problem, solver); - [dico, solver.solution] = dico_update(dico, sig, solver.solution, ... - typeUpdate, flow, learningRate); - if (decorrelate) - dico = dico_decorr(dico, mu, solver.solution); - end + + % configuration file + run([SMALL_path '/config/SMALL_two_step_DL_config.m']) + +% [dico, solver.solution] = dico_update(dico, sig, solver.solution, ... +% typeUpdate, flow, learningRate); +% if (decorrelate) +% dico = dico_decorr(dico, mu, solver.solution); +% end if ((show_dictionary)&&(mod(i,show_iter)==0)) dictimg = SMALL_showdict(dico,[8 8],...
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/SMALLboxInit.m Tue Mar 13 17:33:20 2012 +0000 @@ -0,0 +1,5 @@ +global SMALL_path; +SMALL_path=pwd; + +% SMALL_p = genpath(SMALL_path); +% addpath(SMALL_p);
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/config/SMALL_learn_config.m Tue Mar 13 17:33:20 2012 +0000 @@ -0,0 +1,83 @@ + + + if strcmpi(DL.toolbox,'KSVD') + param=DL.param; + param.data=Problem.b; + + D = eval([DL.name,'(param)']);%, ''t'', 5);']); + elseif strcmpi(DL.toolbox,'KSVDS') + param=DL.param; + param.data=Problem.b; + + D = eval([DL.name,'(param, ''t'', 5);']); + elseif strcmpi(DL.toolbox,'SPAMS') + + X = Problem.b; + param=DL.param; + + D = eval([DL.name,'(X, param);']); + % As some versions of SPAMS does not produce unit norm column + % dictionaries, we need to make sure that columns are normalised to + % unit lenght. + + for i = 1: size(D,2) + D(:,i)=D(:,i)/norm(D(:,i)); + end + elseif strcmpi(DL.toolbox,'SMALL') + + X = Problem.b; + param=DL.param; + + D = eval([DL.name,'(X, param);']); + % we need to make sure that columns are normalised to + % unit lenght. + + for i = 1: size(D,2) + D(:,i)=D(:,i)/norm(D(:,i)); + end + + elseif strcmpi(DL.toolbox,'TwoStepDL') + + DL=SMALL_two_step_DL(Problem, DL); + + % we need to make sure that columns are normalised to + % unit lenght. + + for i = 1: size(DL.D,2) + DL.D(:,i)=DL.D(:,i)/norm(DL.D(:,i)); + end + D = DL.D; + +elseif strcmpi(DL.toolbox,'MMbox') + + DL = wrapper_mm_DL(Problem, DL); + + % we need to make sure that columns are normalised to + % unit lenght. + + for i = 1: size(DL.D,2) + DL.D(:,i)=DL.D(:,i)/norm(DL.D(:,i)); + end + D = DL.D; + +% To introduce new dictionary learning technique put the files in +% your Matlab path. Next, unique name <TolboxID> for your toolbox needs +% to be defined and also prefferd API for toolbox functions <Preffered_API> +% +% elseif strcmpi(DL.toolbox,'<ToolboxID>') +% % This is an example of API that can be used: +% % - get training set from Problem part of structure +% % - assign parameters defined in the main program +% +% X = Problem.b; +% param=DL.param; +% +% % - Evaluate the function (DL.name - defined in the main) with +% % parameters given above +% +% D = eval([DL.name,'(<Preffered_API>);']); + + else + printf('\nToolbox has not been registered. Please change SMALL_learn file.\n'); + return + end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/config/SMALL_two_step_DL_config.m Tue Mar 13 17:33:20 2012 +0000 @@ -0,0 +1,30 @@ + + %DICTIONARY UPDATE STEP + if strcmpi(typeUpdate,'mocod') %if update is MOCOD create parameters structure + mocodParams = struct('zeta',DL.param.zeta,... %coherence regularization factor + 'eta',DL.param.eta,... %atoms norm regularization factor + 'Dprev',dico); %previous dictionary + % dico = dico_update(dico,sig,solver.solution,typeUpdate,flow,learningRate,mocodParams); + if ~isfield(DL.param,'decFcn'), DL.param.decFcn = 'none'; end + + dico = dico_update_mocod(dico,sig,solver.solution,typeUpdate,flow,learningRate,mocodParams); + + else + [dico, solver.solution] = dico_update(dico, sig, solver.solution, ... + typeUpdate, flow, learningRate); + dico = normcols(dico); + end + + switch lower(DL.param.decFcn) + case 'ink-svd' + dico = dico_decorr_symetric(dico,mu,solver.solution); + case 'grassmannian' + [n m] = size(dico); + dico = grassmannian(n,m,[],0.9,0.99,dico); + case 'shrinkgram' + dico = shrinkgram(dico,mu); + case 'iterproj' + dico = iterativeprojections(dico,mu,Problem.b1,solver.solution); + otherwise + end + \ No newline at end of file
--- a/extra/README.txt Thu Feb 09 17:26:45 2012 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,35 +0,0 @@ - -SMALLbox Version 2.0 alpha - -7 February, 2012 - -Version 1.0 beta of SMALLbox is the release candidate that is distributed -for testing and bug fixing purposes. Please send all bugs, requests and suggestions to: - -luis.figueira@eecs.qmul.ac.uk - - ---------------------------------------------------------------------------- - -Copyright (2010): Ivan Damnjanovic, Matthew Davies - Centre for Digital Music, - Queen Mary University of London - -SMALLbox is distributed under the terms of the GNU General Public License 3 - -This program is free software: you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation, either version 3 of the License, or -(at your option) any later version. - -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with this program. If not, see <http://www.gnu.org/licenses/>. - ---------------------------------------------------------------------------- - -This folder is where all external toolboxes, examples, plugins, etc should be put. \ No newline at end of file
--- a/util/SMALL_learn.m Thu Feb 09 17:26:45 2012 +0000 +++ b/util/SMALL_learn.m Tue Mar 13 17:33:20 2012 +0000 @@ -23,88 +23,10 @@ end start=cputime; tStart=tic; - if strcmpi(DL.toolbox,'KSVD') - param=DL.param; - param.data=Problem.b; - - D = eval([DL.name,'(param)']);%, ''t'', 5);']); - elseif strcmpi(DL.toolbox,'KSVDS') - param=DL.param; - param.data=Problem.b; - D = eval([DL.name,'(param, ''t'', 5);']); - elseif strcmpi(DL.toolbox,'SPAMS') + % configuration file + run([SMALL_path 'config/SMALL_learn_config.m']); - X = Problem.b; - param=DL.param; - - D = eval([DL.name,'(X, param);']); - % As some versions of SPAMS does not produce unit norm column - % dictionaries, we need to make sure that columns are normalised to - % unit lenght. - - for i = 1: size(D,2) - D(:,i)=D(:,i)/norm(D(:,i)); - end - elseif strcmpi(DL.toolbox,'SMALL') - - X = Problem.b; - param=DL.param; - - D = eval([DL.name,'(X, param);']); - % we need to make sure that columns are normalised to - % unit lenght. - - for i = 1: size(D,2) - D(:,i)=D(:,i)/norm(D(:,i)); - end - - elseif strcmpi(DL.toolbox,'TwoStepDL') - - DL=SMALL_two_step_DL(Problem, DL); - - % we need to make sure that columns are normalised to - % unit lenght. - - for i = 1: size(DL.D,2) - DL.D(:,i)=DL.D(:,i)/norm(DL.D(:,i)); - end - D = DL.D; - -elseif strcmpi(DL.toolbox,'MMbox') - - DL = wrapper_mm_DL(Problem, DL); - - % we need to make sure that columns are normalised to - % unit lenght. - - for i = 1: size(DL.D,2) - DL.D(:,i)=DL.D(:,i)/norm(DL.D(:,i)); - end - D = DL.D; - -% To introduce new dictionary learning technique put the files in -% your Matlab path. Next, unique name <TolboxID> for your toolbox needs -% to be defined and also prefferd API for toolbox functions <Preffered_API> -% -% elseif strcmpi(DL.toolbox,'<ToolboxID>') -% % This is an example of API that can be used: -% % - get training set from Problem part of structure -% % - assign parameters defined in the main program -% -% X = Problem.b; -% param=DL.param; -% -% % - Evaluate the function (DL.name - defined in the main) with -% % parameters given above -% -% D = eval([DL.name,'(<Preffered_API>);']); - - else - printf('\nToolbox has not been registered. Please change SMALL_learn file.\n'); - return - end - %% % Dictionary Learning time tElapsed=toc(tStart);