Mercurial > hg > smallbox
changeset 170:68fb71aa5339 danieleb
Added dictionary decorrelation functions and test script for Letters paper.
author | Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk> |
---|---|
date | Thu, 06 Oct 2011 14:33:41 +0100 |
parents | 290cca7d3469 |
children | e8428989412f |
files | DL/two-step DL/SMALL_two_step_DL.m examples/SMALL_test_coherence2.m util/classes/@dictionary/plotcumcoherence.m util/classes/dictionaryMatrices/grassmannian.m util/classes/dictionaryMatrices/iterativeprojections.m util/classes/dictionaryMatrices/rotatematrix.m |
diffstat | 6 files changed, 227 insertions(+), 160 deletions(-) [+] |
line wrap: on
line diff
--- a/DL/two-step DL/SMALL_two_step_DL.m Thu Sep 29 09:46:52 2011 +0100 +++ b/DL/two-step DL/SMALL_two_step_DL.m Thu Oct 06 14:33:41 2011 +0100 @@ -114,18 +114,16 @@ [dico, solver.solution] = dico_update(dico, sig, solver.solution, ... typeUpdate, flow, learningRate); dico = normcols(dico); - switch DL.param.decFcn - case 'mailhe' - dico = dico_decorr_symetric(dico, mu, solver.solution); - case 'tropp' + switch lower(DL.param.decFcn) + case 'ink-svd' + dico = dico_decorr_symetric(dico,mu,solver.solution); + case 'grassmannian' [n m] = size(dico); - dico = grassmannian(n,m,[],[],[],dico); - case 'barchiesi' - [n m] = size(dico); - params.nIter = 100; - dico = iterativeprojections(n,m,[],[],[],dico); - [~, ~, W] = rotatematrix(Problem.b,dico*solver.solution,'conjgradlie',params); - dico = W*dico; + dico = grassmannian(n,m,[],0.9,0.99,dico); + case 'shrinkgram' + dico = shrinkgram(dico,mu); + case 'iterproj' + dico = iterativeprojections(dico,mu,Problem.b1,solver.solution); otherwise end
--- a/examples/SMALL_test_coherence2.m Thu Sep 29 09:46:52 2011 +0100 +++ b/examples/SMALL_test_coherence2.m Thu Oct 06 14:33:41 2011 +0100 @@ -1,13 +1,13 @@ clc, clear, close all %% Parameteres +nTrials = 10; %number of trials of the experiment + % Dictionary learning parameters toolbox = 'TwoStepDL'; %dictionary learning toolbox -dicUpdate = {'ksvd'}; %dictionary learning updates -dicDecorr = {'none','mailhe','tropp','barchiesi'}; %dictionary decorrelation methods -minCoherence = linspace(0.1,1,1); %coherence levels -minCoherence = 0.4; -%dicDecorr = {'barchiesi'}; +dicUpdate = 'ksvd'; %dictionary learning updates +dicDecorr = {'iterproj','ink-svd','shrinkgram'}; %dictionary decorrelation methods +minCoherence = linspace(0.1,1,10); %coherence levels iterNum = 20; %number of iterations epsilon = 1e-6; %tolerance level @@ -19,20 +19,16 @@ blockSize = 256; %size of audio frames overlap = 0.5; %overlap between consecutive frames - % Dependent parameters nActiveAtoms = fix(blockSize/100*percActiveAtoms); %number of active atoms % Initial dictionaries -dctDict = dictionary('dct',blockSize,dictSize); -dctDict = dctDict.phi; gaborParam = struct('N',blockSize,'redundancyFactor',2,'wd',@rectwin); gaborDict = Gabor_Dictionary(gaborParam); -initDicts = {[],dctDict,gaborDict}; -initDicts = {[]}; +initDicts = {[],gaborDict}; %% Generate audio approximation problem -signal = buffer(signal,blockSize,blockSize*overlap,@rectwin); +signal = buffer(signal,blockSize,blockSize*overlap,@rectwin); %buffer frames of audio into columns of the matrix S SMALL.Problem.b = signal.S; SMALL.Problem.b1 = SMALL.Problem.b; % copy signals from training set b to test set b1 (needed for later functions) @@ -42,20 +38,19 @@ %% Test -nDicUpdates = length(dicUpdate); %number of dictionary updates nDecorrAlgs = length(dicDecorr); %number of decorrelation algorithms nCorrLevels = length(minCoherence); %number of coherence levels nInitDicts = length(initDicts); %number of initial dictionaries -SMALL.DL(nInitDicts,nCorrLevels,nDecorrAlgs,nDicUpdates) = SMALL_init_DL(toolbox); %create dictionary learning structures -for iInitDicts=1:nInitDicts - for iCorrLevels=1:nCorrLevels - for iDecorrAlgs=1:nDecorrAlgs - for iDicUpdates=1:nDicUpdates - SMALL.DL(iInitDicts,iCorrLevels,iDecorrAlgs,iDicUpdates).toolbox = toolbox; - SMALL.DL(iInitDicts,iCorrLevels,iDecorrAlgs,iDicUpdates).name = dicUpdate{iDicUpdates}; - SMALL.DL(iInitDicts,iCorrLevels,iDecorrAlgs,iDicUpdates).profile = true; - SMALL.DL(iInitDicts,iCorrLevels,iDecorrAlgs,iDicUpdates).param = ... +SMALL.DL(nTrials,nInitDicts,nCorrLevels,nDecorrAlgs) = SMALL_init_DL(toolbox); %create dictionary learning structures +for iTrial=1:nTrials + for iInitDicts=1:nInitDicts + for iCorrLevels=1:nCorrLevels + for iDecorrAlgs=1:nDecorrAlgs + SMALL.DL(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs).toolbox = toolbox; + SMALL.DL(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs).name = dicUpdate; + SMALL.DL(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs).profile = true; + SMALL.DL(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs).param = ... struct( 'data',SMALL.Problem.b,... 'Tdata',nActiveAtoms,... 'dictsize',dictSize,... @@ -66,8 +61,9 @@ 'coherence',minCoherence(iCorrLevels),... 'initdict',initDicts(iInitDicts)); - SMALL.DL(iInitDicts,iCorrLevels,iDecorrAlgs,iDicUpdates) = ... - SMALL_learn(SMALL.Problem,SMALL.DL(iInitDicts,iCorrLevels,iDecorrAlgs,iDicUpdates)); + SMALL.DL(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs) = ... + SMALL_learn(SMALL.Problem,SMALL.DL(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs)); + save('SMALL_DL','SMALL'); end end end @@ -75,23 +71,23 @@ %% Evaluate coherence and snr of representation for the various methods sr = zeros(size(SMALL.DL)); %signal to noise ratio -mu = zeros(size(SMALL.DL)); %coherence +mu = zeros(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs,blockSize); %cumulative coherence dic(size(SMALL.DL)) = dictionary; %initialise dictionary objects -for iInitDict=1:nInitDicts - for iCorrLevels=1:nCorrLevels - for iDecorrAlgs=1:nDecorrAlgs - for iDicUpdates=1:nDicUpdates +for iTrial=1:nTrials + for iInitDicts=1:nInitDicts + for iCorrLevels=1:nCorrLevels + for iDecorrAlgs=1:nDecorrAlgs %Sparse representation - SMALL.Problem.A = SMALL.DL(iInitDicts,iCorrLevels,iDecorrAlgs,iDicUpdates).D; + SMALL.Problem.A = SMALL.DL(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs).D; tempSolver = SMALL_solve(SMALL.Problem,solver); %calculate snr - sr(iInitDicts,iCorrLevels,iDecorrAlgs,iDicUpdates) = ... - snr(SMALL.Problem.b,SMALL.DL(iInitDicts,iCorrLevels,iDecorrAlgs,iDicUpdates).D*tempSolver.solution); + sr(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs) = ... + snr(SMALL.Problem.b,SMALL.DL(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs).D*tempSolver.solution); %calculate mu - dic(iInitDicts,iCorrLevels,iDecorrAlgs,iDicUpdates) = ... - dictionary(SMALL.DL(iInitDicts,iCorrLevels,iDecorrAlgs,iDicUpdates).D); - mu(iInitDicts,iCorrLevels,iDecorrAlgs,iDicUpdates) = ... - dic(iInitDicts,iCorrLevels,iDecorrAlgs,iDicUpdates).coherence; + dic(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs) = ... + dictionary(SMALL.DL(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs).D); + mu(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs,:) = ... + dic(iTrial,iInitDicts,iCorrLevels,iDecorrAlgs).cumcoherence; end end end @@ -99,15 +95,15 @@ %% Plot results minMu = sqrt((dictSize-blockSize)/(blockSize*(dictSize-1))); %lowe bound on coherence -initDictsNames = {'Data','DCT','Gabor'}; -dicDecorrNames = {'K-SVD','INK-SVD','Grassmannian','New'}; -lineStyles = {'ks-','kd-','ko-','k*-'}; +initDictsNames = {'Data','Gabor'}; +dicDecorrNames = {'Iter. Proj. + Rotation','INK-SVD','Iter. Proj.'}; +lineStyles = {'ks-','kd-','ko-'}; for iInitDict=1:nInitDicts figure, hold on, grid on title([initDictsNames{iInitDict} ' Initialisation']); plot([1 1],[0 25],'k-'); for iDecorrAlgs=1:nDecorrAlgs - plot(mu(iInitDicts,:,iDecorrAlgs,1),sr(iInitDicts,:,iDecorrAlgs,1),... + plot(mu(1,iInitDict,:,iDecorrAlgs,1),sr(1,iInitDict,:,iDecorrAlgs),... lineStyles{iDecorrAlgs}); end plot([minMu minMu],[0 25],'k--')
--- a/util/classes/@dictionary/plotcumcoherence.m Thu Sep 29 09:46:52 2011 +0100 +++ b/util/classes/@dictionary/plotcumcoherence.m Thu Oct 06 14:33:41 2011 +0100 @@ -1,10 +1,42 @@ -function plotcumcoherence(obj) -mu = cumcoherence(obj); -v = conv(mu,[1 1]); -ind = find(v<1, 1, 'last'); -plot(1:obj.len,mu); -hold on -line([ind ind], [min(mu) max(mu)],'Color','red'); -title(['Minimum allowed sparsity (Tanner):' num2str(ind/obj.len)]); -grid on -end \ No newline at end of file +function plotcumcoherence(obj,mu) +if ~exist('mu','var') || isempty(mu), mu = cumcoherence(obj); end +[d N] = size(obj.phi); + +% Plot cumulative coherence with lower and upper bounds +mumin = (1:d)*sqrt((N-d)/(d*(N-1))); +mumax = (1:d); +figure, +subplot(1,6,1:2) +hold on, grid on +plot(1,mumax(1),'k-s'); +plot(1,mu(1),'ko'); +plot(1,mumin(1),'k-d') +set(gca,'XScale','log','YScale','log'); +axis tight +ylabel('\mu'); +ylim([mumin(1) 10]) + +subplot(1,6,3:6) +hold on, grid on +plot(2:d,mumax(2:end),'k-s'); +plot(2:d,mu(2:end),'k-o'); +plot(2:d,mumin(2:end),'k-d'); +set(gca,'XScale','log','YScale','log'); +axis tight +xlabel('k'); +ylabel('\mu(k)'); +ylim([mumin(1) 10]) + +% Plot recovery bounds +plot(2:d,1-mu(1:d-1),'r-o') +plot(2:d,1-mumin(1:d-1)','r-d') +plot([2 d],[1/3 1/3],'b'); +legend('\mu_{max}(k)','\mu(k)','\mu_{min}(k)','Exact-Sparse \mu','Exact-Sparse \mu_{min}','Sparse'); + + +% v = conv(mu,[1 1]); +% ind = find(v<1, 1, 'last'); +% +% line([ind ind], [min(mu) max(mu)],'Color','red'); +% title(['Minimum allowed sparsity (Tanner):' num2str(ind/obj.len)]); +end
--- a/util/classes/dictionaryMatrices/grassmannian.m Thu Sep 29 09:46:52 2011 +0100 +++ b/util/classes/dictionaryMatrices/grassmannian.m Thu Oct 06 14:33:41 2011 +0100 @@ -12,7 +12,7 @@ if ~exist('verb','var') || isempty(verb), verb = false; end %verbose output if ~exist('initA','var') || isempty(initA), initA = randn(n,m); end %initial matrix -if ~exist('dd2','var') || isempty(dd2), dd2 = 0.99; end %shrinking factor +if ~exist('dd2','var') || isempty(dd2), dd2 = 0.9; end %shrinking factor if ~exist('dd1','var') || isempty(dd1), dd1 = 0.9; end %percentage of coherences to be shrinked if ~exist('nIter','var') || isempty(nIter), nIter = 10; end %number of iterations @@ -42,19 +42,6 @@ end end -% [~, Sigma_gram V_gram] = svd(G); %calculate svd decomposition of gramian - -% A = normc(A); %normalise dictionary - [V_gram Sigma_gram] = svd(G); %calculate svd decomposition of gramian Sigma_new = sqrt(Sigma_gram(1:n,:)).*sign(Sigma); %calculate singular values of dictionary A = Uinit*Sigma_new*V_gram'; %update dictionary - -% param.step = 0.01; -% param.reg = 0.01; -% param.nIter = 20; -% A = rotatematrix(initA,A,'linesearchlie',param); - -% %% Debug visualization function -% function plotcart2d(A) -% compass(A(1,:),A(2,:));
--- a/util/classes/dictionaryMatrices/iterativeprojections.m Thu Sep 29 09:46:52 2011 +0100 +++ b/util/classes/dictionaryMatrices/iterativeprojections.m Thu Oct 06 14:33:41 2011 +0100 @@ -1,60 +1,97 @@ -function [A G res muMin] = grassmannian(n,m,nIter,dd1,dd2,initA,verb) +function [dic mus srs] = iterativeprojections(dic,mu,Y,X,params) % grassmanian attempts to create an n by m matrix with minimal mutual % coherence using an iterative projection method. % -% [A G res] = grassmanian(n,m,nIter,dd1,dd2,initA) +% REFERENCE % -% REFERENCE -% M. Elad, Sparse and Redundant Representations, Springer 2010. %% Parameters and Defaults -error(nargchk(2,7,nargin)); +if ~nargin, testiterativeprojections; return; end -if ~exist('verb','var') || isempty(verb), verb = false; end %verbose output -if ~exist('initA','var') || isempty(initA), initA = randn(n,m); end %initial matrix -if ~exist('dd2','var') || isempty(dd2), dd2 = 0.99; end %shrinking factor -if ~exist('dd1','var') || isempty(dd1), dd1 = 0.9; end %percentage of coherences to be shrinked -if ~exist('nIter','var') || isempty(nIter), nIter = 10; end %number of iterations +if ~exist('params','var') || isempty(param), params = struct; end +if ~isfield(params,'nIter'), params.nIter = 10; end %number of iterations +if ~isfield(params,'eps'), params.eps = 1e-9; end %tolerance level +[n m] = size(dic); -%% Main algo -A = normc(initA); %normalise columns -[Uinit Sigma] = svd(A); -G = A'*A; %gram matrix +SNR = @(dic) snr(Y,dic*X); %SNR function +MU = @(dic) max(max(abs((dic'*dic)-diag(diag(dic'*dic))))); %coherence function -muMin = sqrt((m-n)/(n*(m-1))); %Lower bound on mutual coherence (equiangular tight frame) -res = zeros(nIter,1); -if verb - fprintf(1,'Iter mu_min mu \n'); +%% Main algorithm +dic = normc(dic); %normalise columns +alpha = m/n; %ratio between number of atoms and ambient dimension + +mus = zeros(params.nIter,1); %coherence at each iteration +srs = zeros(params.nIter,1); %signal to noise ratio at each iteration +iIter = 1; +while iIter<=params.nIter && MU(dic)>mu + fprintf(1,'Iteration number %u\n', iIter); + % calculate snr and coherence + mus(iIter) = MU(dic); + srs(iIter) = SNR(dic); + + % calculate gram matrix + G = dic'*dic; + + % project into the structural constraint set + H = zeros(size(G)); %initialise matrix + ind1 = find(abs(G(:))<=mu); %find elements smaller than mu + ind2 = find(abs(G(:))>mu); %find elements bigger than mu + H(ind1) = G(ind1); %copy elements belonging to ind1 + H(ind2) = mu*sign(G(ind2)); %threshold elements belonging to ind2 + H(1:m+1:end) = 1; %set diagonal to one + + % project into spectral constraint set + [~ , S, V] = svd(H); + %G = alpha*(V(:,1:n)*V(:,1:n)'); + G = V(:,1:n)*S(1:n,1:n)*V(:,1:n)'; + + % calculate dictionary + [~, S V] = svd(G); + dic = sqrt(S(1:n,:))*V'; + + % rotate dictionary + options = struct('nIter',100,'step',0.001); + [~, ~, W] = rotatematrix(Y,dic*X,'conjgradlie',options); + dic = W*dic; + + iIter = iIter+1; end +if iIter<params.nIter + mus(iIter:end) = mus(iIter); + srs(iIter:end) = srs(iIter); +end +% Test function +function testiterativeprojections +clc +%define parameters +n = 256; %ambient dimension +m = 512; %number of atoms +N = 1024; %number of signals +mu_min = sqrt((m-n)/(n*(m-1))); %minimum coherence -% optimise gram matrix -for iIter = 1:nIter - gg = sort(abs(G(:))); %sort inner products from less to most correlated - pos = find(abs(G(:))>=gg(round(dd1*(m^2-m))) & abs(G(:)-1)>1e-6); %find large elements of gram matrix - G(pos) = G(pos)*dd2; %shrink large elements of gram matrix - [U S V] = svd(G); %compute new SVD of gram matrix - S(n+1:end,1+n:end) = 0; %set small eigenvalues to zero (this ensures rank(G)<=d) - G = U*S*V'; %update gram matrix - G = diag(1./abs(sqrt(diag(G))))*G*diag(1./abs(sqrt(diag(G)))); %normalise gram matrix diagonal - if verb - Geye = G - eye(size(G)); - fprintf(1,'%6i %12.8f %12.8f \n',iIter,muMin,max(abs(Geye(:)))); - end -end +%initialise data +X = sprandn(m,N,1); %matrix of coefficients +phi = normc(randn(n,m)); %dictionary +temp = randn(n); +W = expm(0.5*(temp-temp')); %rotation matrix +Y = W*phi*X; %observed signals -% [~, Sigma_gram V_gram] = svd(G); %calculate svd decomposition of gramian +%optimise dictionary +[~, mus srs] = iterativeprojections(phi,0.2,Y,X); -% A = normc(A); %normalise dictionary +%plot results +nIter = length(mus); -[V_gram Sigma_gram] = svd(G); %calculate svd decomposition of gramian -Sigma_new = sqrt(Sigma_gram(1:n,:)).*sign(Sigma); %calculate singular values of dictionary -A = Uinit*Sigma_new*V_gram'; %update dictionary +figure, +subplot(2,1,1) +plot(1:nIter,srs,'kd-'); +xlabel('nIter'); +ylabel('snr (dB)'); +grid on -% param.step = 0.01; -% param.reg = 0.01; -% param.nIter = 20; -% A = rotatematrix(initA,A,'linesearchlie',param); +subplot(2,1,2), hold on +plot(1:nIter,mus,'ko-'); +plot([1 nIter],[mu_min mu_min],'k') +grid on +legend('\mu','\mu_{min}'); -% %% Debug visualization function -% function plotcart2d(A) -% compass(A(1,:),A(2,:));
--- a/util/classes/dictionaryMatrices/rotatematrix.m Thu Sep 29 09:46:52 2011 +0100 +++ b/util/classes/dictionaryMatrices/rotatematrix.m Thu Oct 06 14:33:41 2011 +0100 @@ -5,54 +5,66 @@ % REFERENCE % M.D. Plumbley, Geometrical Methods for Non-Negative ICA: Manifolds, Lie % Groups and Toral Subalgebra, Neurocomputing + +%% Parse inputs and set defaults if ~nargin, testrotatematrix; return, end +if ~exist('param','var') || isempty(param), param = struct; end +if ~exist('method','var') || isempty(method), method = 'conjgradLie'; end +if ~isfield(param,'nIter'), param.nIter = 100; end %number of iterations +if ~isfield(param,'eps'), param.eps = 1e-9; end %tolerance level +if ~isfield(param,'step'), param.step = 0.01; end -if ~exist('method','var') || isempty(method), method = 'unconstrained'; end +J = @(W) 0.5*norm(D-W*Phi,'fro'); %cost function -J = @(W) 0.5*norm(D-W*Phi,'fro'); -cost = zeros(param.nIter,1); +% Initialise variables +cost = zeros(param.nIter,1); %cost at each iteration +W = eye(size(Phi,1)); %rotation matrix +grad = ones(size(W)); %gradient +t = param.step; %step size +Gprev = 0; %previous gradient +Hprev = 0; %previous Lie search direction +iIter = 1; %iteration counter -W = eye(size(Phi,1)); -t = 0; -Gprev = 0; -Hprev = 0; -for i=1:param.nIter - cost(i) = J(W); - grad = (W*Phi-D)*Phi'; +%% Main algorithm +while iIter<=param.nIter && norm(grad,'fro')>eps + cost(iIter) = J(W); %calculate cost + grad = (W*Phi-D)*Phi'; %calculate gradient switch method case 'unconstrained' % gradient descent eta = param.step; W = W - eta*grad; % update W by steepest descent case 'tangent' % self correcting tangent eta = param.step; - mu = param.reg; - W = W - 0.5*eta*(grad - W*grad'*W + mu*W*(W'*W-eye(size(W)))); - case 'steepestlie' + W = W - 0.5*eta*(grad - W*grad'*W); + [U , ~, V] = svd(W); + W = U*V'; + case 'steepestlie' %steepest descent in Lie algebra eta = param.step; - B = 2*skew(grad*W'); % calculate gradient in lie algebra + B = 2*skew(grad*W'); % calculate gradient in Lie algebra W = expm(-eta*B)*W; % update W by steepest descent - case 'linesearchlie' - B = 2*skew(grad*W'); % calculate gradient in lie algebra + case 'linesearchlie' % line search in Lie algebra + B = 2*skew(grad*W'); % calculate gradient in Lie algebra H = -B; % calculate direction as negative gradient - t = searchline(J,H,W,t);% line search in one-parameter lie subalgebra + t = searchline(J,H,W,t);% line search in one-parameter Lie subalgebra W = expm(t*H)*W; % update W by line search - case 'conjgradlie' - G = 2*skew(grad*W'); % calculate gradient in lie algebra + case 'conjgradlie' % conjugate gradient in Lie algebra + G = 2*skew(grad*W'); % calculate gradient in Lie algebra H = -G + polakRibiere(G,Gprev)*Hprev; %calculate conjugate gradient direction - t = searchline(J,H,W,t);% line search in one-parameter lie subalgebra + t = searchline(J,H,W,t);% line search in one-parameter Lie subalgebra W = expm(t*H)*W; % update W by line search - Hprev = H; % % save search direction - Gprev = G; % % save gradient + Hprev = H; % save search direction + Gprev = G; % save gradient end + iIter = iIter+1; % update iteration counter end -Dhat = W*Phi; +Dhat = W*Phi; %rotate matrix +cost(iIter:end) = cost(iIter-1); %pad cost vector end -% function C = matcomm(A,B) -% %Matrix commutator -% C = A*B-B*A; +%% Support functions function gamma = polakRibiere(G,Gprev) +%Polak-Ribiere rule for conjugate direction calculation gamma = G(:)'*(G(:)-Gprev(:))/(norm(Gprev(:))^2); if isnan(gamma) || isinf(gamma) gamma = 0; @@ -60,36 +72,41 @@ end function t = searchline(J,H,W,t) +%Line search in one-parameter Lie subalgebra t = fminsearch(@(x) J(expm(x*H)*W),t); end function B = skew(A) +%Skew-symmetric matrix B = 0.5*(A - A'); end +%% Test function function testrotatematrix clear, clc, close all -n = 256; -m = 512; -disp('A random matrix...'); -Phi = randn(n,m); -disp('And its rotated mate...'); -Qtrue = expm(skew(randn(n))); -D = Qtrue*Phi; -disp('Now, lets try to find the right rotation...'); -param.nIter = 1000; -param.step = 0.001; +n = 256; %ambient dimension +m = 512; %number of atoms +param.nIter = 300; %number of iterations +param.step = 0.001; %step size +param.mu = 0.01; %regularization factor (for tangent method) +methods = {'unconstrained','tangent','linesearchlie','conjgradlie'}; -cost = zeros(param.nIter,4); -[~, cost(:,1)] = rotatematrix(D,Phi,'unconstrained',param); -[~, cost(:,2)] = rotatematrix(D,Phi,'steepestlie',param); -[~, cost(:,3)] = rotatematrix(D,Phi,'linesearchlie',param); -[~, cost(:,4)] = rotatematrix(D,Phi,'conjgradlie',param); +Phi = randn(n,m); %initial dictionary +Qtrue = expm(skew(randn(n))); %rotation matrix +D = Qtrue*Phi; %target dictionary + +cost = zeros(param.nIter,length(methods)); +for iIter=1:length(methods) + tic + [~, cost(:,iIter)] = rotatematrix(D,Phi,methods{iIter},param); + time = toc; + sprintf('Method %s completed in %f seconds \n',methods{iIter},time) +end figure, plot(cost) set(gca,'XScale','log','Yscale','log') -legend({'uncons','settpestlie','linesearchlie','conjgradlie'}) +legend(methods) grid on xlabel('number of iterations') ylabel('J(W)')