Mercurial > hg > smallbox
changeset 84:67aae1283973
comments to ksvd vs rls-dla
author | Ivan <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Fri, 01 Apr 2011 14:27:44 +0100 |
parents | 4302a91e6033 |
children | fd1c32cda22c |
files | examples/Image Denoising/SMALL_ImgDenoise_DL_test_KSVDvsRLSDLA.m |
diffstat | 1 files changed, 35 insertions(+), 167 deletions(-) [+] |
line wrap: on
line diff
--- a/examples/Image Denoising/SMALL_ImgDenoise_DL_test_KSVDvsRLSDLA.m Fri Apr 01 12:11:16 2011 +0100 +++ b/examples/Image Denoising/SMALL_ImgDenoise_DL_test_KSVDvsRLSDLA.m Fri Apr 01 14:27:44 2011 +0100 @@ -54,6 +54,7 @@ SMALL.Problem = generateImageDenoiseProblem(test_image(im_num).i, 40000, '',256, noise_level(noise_ind)); SMALL.Problem.name=int2str(im_num); +% results structure is to store all results results(noise_ind,im_num).noisy_psnr=SMALL.Problem.noisy_psnr; @@ -114,62 +115,32 @@ 'epsilon',Edata,... 'maxatoms', maxatoms); -% Denoising the image - SMALL_denoise function is similar to SMALL_solve, -% but backward compatible with KSVD definition of denoising +% Denoising the image - find the sparse solution in the learned +% dictionary for all patches in the image and the end it uses +% reconstruction function to reconstruct the patches and put them into a +% denoised image SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1)); + +% Show PSNR after reconstruction + SMALL.solver(1).reconstructed.psnr + %% -% Use KSVDS Dictionary Learning Algorithm to denoise image - -% Initialising solver structure -% Setting solver structure fields (toolbox, name, param, solution, -% reconstructed and time) to zero values -% -% SMALL.DL(2)=SMALL_init_DL(); -% -% % Defining the parameters needed for dictionary learning -% -% SMALL.DL(2).toolbox = 'KSVDS'; -% SMALL.DL(2).name = 'ksvds'; -% -% % Defining the parameters for KSVDS -% % In this example we are learning 256 atoms in 20 iterations, so that -% % every patch in the training set can be represented with target error in -% % L2-norm (EDataS). We also impose "double sparsity" - dictionary itself -% % has to be sparse in the given base dictionary (Tdict - number of -% % nonzero elements per atom). -% % Type help ksvds in MATLAB prompt for more options. -% -% -% SMALL.DL(2).param=struct(... -% 'Edata', Edata, ... -% 'Tdict', 6,... -% 'stepsize', 1,... -% 'dictsize', SMALL.Problem.p,... -% 'iternum', 20,... -% 'memusage', 'high'); -% SMALL.DL(2).param.initA = speye(SMALL.Problem.p); -% SMALL.DL(2).param.basedict{1} = odctdict(8,16); -% SMALL.DL(2).param.basedict{2} = odctdict(8,16); -% -% % Learn the dictionary -% -% SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2)); - -% Set SMALL.Problem.A dictionary and SMALL.Problem.basedictionary -% (backward compatiblity with SPARCO: solver structure communicate -% only with Problem structure, ie no direct communication between DL and -% solver structures) +% For comparison purposes we will denoise image with overcomplete DCT +% here +% Set SMALL.Problem.A dictionary to be oDCT (i.e. Problem.initdict - +% since initial dictionaruy is already set to be oDCT when generating the +% denoising problem SMALL.Problem.A = SMALL.Problem.initdict; -% SMALL.Problem.basedict{1} = SMALL.DL(2).param.basedict{1}; -% SMALL.Problem.basedict{2} = SMALL.DL(2).param.basedict{2}; SMALL.DL(2).D=SMALL.Problem.initdict; + +% Setting up reconstruction function + SparseDict=0; SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem, SparseDict); -%% % Initialising solver structure % Setting solver structure fields (toolbox, name, param, solution, % reconstructed and time) to zero values @@ -184,15 +155,17 @@ 'epsilon',Edata,... 'maxatoms', maxatoms); -% Denoising the image - SMALL_denoise function is similar to SMALL_solve, -% but backward compatible with KSVD definition of denoising -% Pay attention that since implicit base dictionary is used, denoising -% can be much faster then using explicit dictionary in KSVD example. +% Denoising the image - find the sparse solution in the learned +% dictionary for all patches in the image and the end it uses +% reconstruction function to reconstruct the patches and put them into a +% denoised image SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2)); %% - -for i =1:1 +% In the b1 field all patches from the image are stored. For RLS-DLA we +% will first exclude all the patches that have l2 norm smaller then +% threshold and then take min(40000, number_of_remaining_patches) in +% ascending order as our training set (SMALL.Problem.b) X=SMALL.Problem.b1; X_norm=sqrt(sum(X.^2, 1)); @@ -209,6 +182,9 @@ end +% Forgetting factor for RLS-DLA algorithm, in this case we are using +% fixed value + lambda=0.9998 % Use Recursive Least Squares @@ -231,118 +207,16 @@ 'forgettingMode', 'FIX',... 'forgettingFactor', lambda); -% % Type 'help mexTrainDL in MATLAB prompt for explanation of parameters. -% -% SMALL.DL(3).param=struct(... -% 'D', SMALL.Problem.initdict,... -% 'K', SMALL.Problem.p,... -% 'lambda', 2,... -% 'iter', 200,... -% 'mode', 3, ... -% 'modeD', 0); - -% Learn the dictionary SMALL.DL(3) = SMALL_learn(SMALL.Problem, SMALL.DL(3)); -%SMALL.DL(3).D(:,1)=SMALL.DL(1).D(:,1); -% -% % Set SMALL.Problem.A dictionary -% % (backward compatiblity with SPARCO: solver structure communicate -% % only with Problem structure, ie no direct communication between DL and -% % solver structures) -% -% -% -% %% -% % Initialising solver structure -% % Setting solver structure fields (toolbox, name, param, solution, -% % reconstructed and time) to zero values -% SMALL.Problem.A = SMALL.DL(1).D; -% SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem); -% maxatoms=5; -% SMALL.solver(3)=SMALL_init_solver; -% -% % Defining the parameters needed for denoising -% -% % SMALL.solver(3).toolbox='SPAMS'; -% % SMALL.solver(3).name='mexLasso'; -% % SMALL.solver(3).param=struct(... -% % 'mode', 1, ... -% % 'lambda',Edata*Edata,... -% % 'L', maxatoms); -% % % Denoising the image - SMALL_denoise function is similar to SMALL_solve, -% % % but backward compatible with KSVD definition of denoising -% % -% % SMALL.solver(3)=SMALL_solve(SMALL.Problem, SMALL.solver(3)); -% SMALL.solver(3).toolbox='SMALL'; -% SMALL.solver(3).name='SMALL_cgp'; -% SMALL.solver(3).param=sprintf('%d, %.2f', maxatoms, sqrt(Edata)); -% % Denoising the image - SMALL_denoise function is similar to SMALL_solve, -% % but backward compatible with KSVD definition of denoising -% -% SMALL.solver(3)=SMALL_solve(SMALL.Problem, SMALL.solver(3)); - -% %% -% % Use RLS-DLA -% -% % Initialising Dictionary structure -% % Setting Dictionary structure fields (toolbox, name, param, D and time) -% % to zero values -% -% SMALL.DL(3)=SMALL_init_DL(); -% -% % Defining fields needed for dictionary learning -% -% SMALL.DL(3).toolbox = 'mpv2'; -% SMALL.DL(3).name = 'rlsdla'; -% -% % Type 'help mexTrainDL in MATLAB prompt for explanation of parameters. -% -% SMALL.DL(3).param=struct(... -% 'D', SMALL.Problem.initdict,... -% 'K', SMALL.Problem.p,... -% 'abs', Edata*Edata,... -% 'lambda', 0.995,... -% 'iternum',1); -% -% % Learn the dictionary -% -% SMALL.DL(3) = SMALL_learn(SMALL.Problem, SMALL.DL(3)); -% -% % Set SMALL.Problem.A dictionary -% % (backward compatiblity with SPARCO: solver structure communicate -% % only with Problem structure, ie no direct communication between DL and -% % solver structures) -% -% - -%% -% Initialising solver structure -% Setting solver structure fields (toolbox, name, param, solution, -% reconstructed and time) to zero values -%SMALL.DL(3).D(:,225:256)=0; -SMALL.Problem.A = SMALL.DL(3).D; -SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem); -%maxatoms=32; -SMALL.solver(3)=SMALL_init_solver; - -% Defining the parameters needed for denoising - -% SMALL.solver(3).toolbox='SPAMS'; -% SMALL.solver(3).name='mexLasso'; -% SMALL.solver(3).param=struct(... -% 'mode', 1, ... -% 'lambda',Edata*Edata,... -% 'L', maxatoms); -% % Denoising the image - SMALL_denoise function is similar to SMALL_solve, -% % but backward compatible with KSVD definition of denoising -% -% SMALL.solver(3)=SMALL_solve(SMALL.Problem, SMALL.solver(3)); % Initialising solver structure % Setting solver structure fields (toolbox, name, param, solution, % reconstructed and time) to zero values +SMALL.Problem.A = SMALL.DL(3).D; +SMALL.Problem.reconstruct = @(x) ImgDenoise_reconstruct(x, SMALL.Problem); + SMALL.solver(3)=SMALL_init_solver; % Defining the parameters needed for image denoising @@ -352,23 +226,17 @@ SMALL.solver(3).param=struct(... 'epsilon',Edata,... 'maxatoms', maxatoms); -% SMALL.solver(3).toolbox='SPAMS'; -% SMALL.solver(3).name='mexLasso'; -% SMALL.solver(3).param=struct(... -% 'mode', 2, ... -% 'lambda',40,... -% 'L', maxatoms); -% Denoising the image - SMALL_denoise function is similar to SMALL_solve, -% but backward compatible with KSVD definition of denoising SMALL.solver(3)=SMALL_solve(SMALL.Problem, SMALL.solver(3)); -% Plot results and save midi files + SMALL.solver(3).reconstructed.psnr + + % show results % SMALL_ImgDeNoiseResult(SMALL); -end + results(noise_ind,im_num).psnr.ksvd=SMALL.solver(1).reconstructed.psnr; results(noise_ind,im_num).psnr.odct=SMALL.solver(2).reconstructed.psnr; results(noise_ind,im_num).psnr.rlsdla=SMALL.solver(3).reconstructed.psnr;