Mercurial > hg > smallbox
changeset 202:5bb579c9874e luisf_dev
Merge
author | bmailhe |
---|---|
date | Tue, 20 Mar 2012 14:51:31 +0000 |
parents | 5140b0e06c22 (current diff) 751fa3bddd30 (diff) |
children | 5fe60504a6a9 233e75809e4a |
files | config/SMALL_two_step_DL_config.m |
diffstat | 8 files changed, 149 insertions(+), 154 deletions(-) [+] |
line wrap: on
line diff
--- a/DL/two-step DL/SMALL_two_step_DL.m Tue Mar 20 14:50:35 2012 +0000 +++ b/DL/two-step DL/SMALL_two_step_DL.m Tue Mar 20 14:51:31 2012 +0000 @@ -30,8 +30,7 @@ % initialize the dictionary % -% todo: check second if statement -if (isfield(DL.param,'initdict')) && ~isempty(DL.param.initdict); +if (isfield(DL.param,'initdict')) if (any(size(DL.param.initdict)==1) && all(iswhole(DL.param.initdict(:)))) dico = sig(:,DL.param.initdict(1:dictsize)); else @@ -98,7 +97,6 @@ % want sparse representation of training set, and in Problem.b1 in this % version of software we store the signal that needs to be represented % (for example the whole image) -global SMALL_path tmpTraining = Problem.b1; Problem.b1 = sig; @@ -112,15 +110,11 @@ for i = 1:iternum Problem.A = dico; solver = SMALL_solve(Problem, solver); - - % configuration file - run([SMALL_path '/config/SMALL_two_step_DL_config.m']) - -% [dico, solver.solution] = dico_update(dico, sig, solver.solution, ... -% typeUpdate, flow, learningRate); -% if (decorrelate) -% dico = dico_decorr(dico, mu, solver.solution); -% end + [dico, solver.solution] = dico_update(dico, sig, solver.solution, ... + typeUpdate, flow, learningRate); + if (decorrelate) + dico = dico_decorr(dico, mu, solver.solution); + end if ((show_dictionary)&&(mod(i,show_iter)==0)) dictimg = SMALL_showdict(dico,[8 8],... @@ -145,4 +139,4 @@ Y(blockids) = sum(X(:,blockids).^2); end -end +end \ No newline at end of file
--- a/SMALLboxInit.m Tue Mar 20 14:50:35 2012 +0000 +++ b/SMALLboxInit.m Tue Mar 20 14:51:31 2012 +0000 @@ -1,5 +1,4 @@ global SMALL_path; -SMALL_path=[fileparts(mfilename('fullpath')) filesep]; +SMALL_path = fileparts(mfilename('fullpath')); -% SMALL_p = genpath(SMALL_path); -% addpath(SMALL_p); +addpath(genpath(SMALL_path));
--- a/SMALLboxSetup.m Tue Mar 20 14:50:35 2012 +0000 +++ b/SMALLboxSetup.m Tue Mar 20 14:51:31 2012 +0000 @@ -66,14 +66,10 @@ end - - - -SMALL_path=pwd; +SMALL_path=fileparts(mfilename('fullpath')); SMALL_p=genpath(SMALL_path); addpath(SMALL_p); - %%
--- a/config/SMALL_learn_config.m Tue Mar 20 14:50:35 2012 +0000 +++ b/config/SMALL_learn_config.m Tue Mar 20 14:51:31 2012 +0000 @@ -1,18 +1,32 @@ +%% Configuration file used in SMALL_learn +% +% Use this file to change the dictionary learning algorithms in SMALLBox +% Please refer to the documentation before editing this file +% Centre for Digital Music, Queen Mary, University of London. +% This file copyright 2009 Ivan Damnjanovic. +% +% This program is free software; you can redistribute it and/or +% modify it under the terms of the GNU General Public License as +% published by the Free Software Foundation; either version 2 of the +% License, or (at your option) any later version. See the file +% COPYING included with this distribution for more information. +% +%% - if strcmpi(DL.toolbox,'KSVD') - param=DL.param; +if strcmpi(DL.toolbox,'KSVD') + param=DL.param; param.data=Problem.b; - + D = eval([DL.name,'(param)']);%, ''t'', 5);']); - elseif strcmpi(DL.toolbox,'KSVDS') - param=DL.param; +elseif strcmpi(DL.toolbox,'KSVDS') + param=DL.param; param.data=Problem.b; D = eval([DL.name,'(param, ''t'', 5);']); - elseif strcmpi(DL.toolbox,'SPAMS') +elseif strcmpi(DL.toolbox,'SPAMS') - X = Problem.b; + X = Problem.b; param=DL.param; D = eval([DL.name,'(X, param);']); @@ -23,9 +37,9 @@ for i = 1: size(D,2) D(:,i)=D(:,i)/norm(D(:,i)); end - elseif strcmpi(DL.toolbox,'SMALL') +elseif strcmpi(DL.toolbox,'SMALL') - X = Problem.b; + X = Problem.b; param=DL.param; D = eval([DL.name,'(X, param);']); @@ -36,8 +50,8 @@ D(:,i)=D(:,i)/norm(D(:,i)); end - elseif strcmpi(DL.toolbox,'TwoStepDL') - +elseif strcmpi(DL.toolbox,'TwoStepDL') + DL=SMALL_two_step_DL(Problem, DL); % we need to make sure that columns are normalised to @@ -49,7 +63,7 @@ D = DL.D; elseif strcmpi(DL.toolbox,'MMbox') - + DL = wrapper_mm_DL(Problem, DL); % we need to make sure that columns are normalised to @@ -58,18 +72,18 @@ for i = 1: size(DL.D,2) DL.D(:,i)=DL.D(:,i)/norm(DL.D(:,i)); end - D = DL.D; - + D = DL.D; + % To introduce new dictionary learning technique put the files in -% your Matlab path. Next, unique name <TolboxID> for your toolbox needs +% your Matlab path. Next, unique name <TolboxID> for your toolbox needs % to be defined and also prefferd API for toolbox functions <Preffered_API> -% +% % elseif strcmpi(DL.toolbox,'<ToolboxID>') % % This is an example of API that can be used: % % - get training set from Problem part of structure % % - assign parameters defined in the main program % -% X = Problem.b; +% X = Problem.b; % param=DL.param; % % % - Evaluate the function (DL.name - defined in the main) with @@ -77,7 +91,7 @@ % % D = eval([DL.name,'(<Preffered_API>);']); - else +else printf('\nToolbox has not been registered. Please change SMALL_learn file.\n'); return - end +end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/config/SMALL_solve_config.m Tue Mar 20 14:51:31 2012 +0000 @@ -0,0 +1,80 @@ +%% Configuration file used in SMALL_solve +% +% Use this file to change the solvers in SMALLBox +% Please refer to the documentation before editing this file + +% Centre for Digital Music, Queen Mary, University of London. +% This file copyright 2009 Ivan Damnjanovic. +% +% This program is free software; you can redistribute it and/or +% modify it under the terms of the GNU General Public License as +% published by the Free Software Foundation; either version 2 of the +% License, or (at your option) any later version. See the file +% COPYING included with this distribution for more information. +% +%% + +if strcmpi(solver.toolbox,'sparselab') + y = eval([solver.name,'(SparseLab_A, b, n,',solver.param,');']); +elseif strcmpi(solver.toolbox,'sparsify') + if isa(Problem.A,'float') + y = eval([solver.name,'(b, A, n,',solver.param,');']); + else + y = eval([solver.name,'(b, A, n, ''P_trans'', AT,',solver.param,');']); + end +elseif (strcmpi(solver.toolbox,'spgl1')||strcmpi(solver.toolbox,'gpsr')) + y = eval([solver.name,'(b, A,',solver.param,');']); +elseif (strcmpi(solver.toolbox,'SPAMS')) + y = eval([solver.name,'(b, A, solver.param);']); +elseif (strcmpi(solver.toolbox,'SMALL')) + if isa(Problem.A,'float') + y = eval([solver.name,'(A, b, n,',solver.param,');']); + else + y = eval([solver.name,'(A, b, n,',solver.param,',AT);']); + end +elseif (strcmpi(solver.toolbox, 'ompbox')) + G=A'*A; + epsilon=solver.param.epsilon; + maxatoms=solver.param.maxatoms; + y = eval([solver.name,'(A, b, G,epsilon,''maxatoms'',maxatoms,''checkdict'',''off'');']); +elseif (strcmpi(solver.toolbox, 'ompsbox')) + basedict = Problem.basedict; + if issparse(Problem.A) + A = Problem.A; + else + A = sparse(Problem.A); + end + G = dicttsep(basedict,A,dictsep(basedict,A,speye(size(A,2)))); + epsilon=solver.param.epsilon; + maxatoms=solver.param.maxatoms; + y = eval([solver.name,'(basedict, A, b, G,epsilon,''maxatoms'',maxatoms,''checkdict'',''off'');']); + Problem.sparse=1; +elseif (strcmpi(solver.toolbox, 'ALPS')) + if ~isa(Problem.A,'float') + % ALPS does not accept implicit dictionary definition + A = opToMatrix(Problem.A, 1); + end + [y, numiter, time, y_path] = wrapper_ALPS_toolbox(b, A, solver.param); +elseif (strcmpi(solver.toolbox, 'MMbox')) + if ~isa(Problem.A,'float') + % MMbox does not accept implicit dictionary definition + A = opToMatrix(Problem.A, 1); + end + + [y, cost] = wrapper_mm_solver(b, A, solver.param); + + % To introduce new sparse representation algorithm put the files in + % your Matlab path. Next, unique name <TolboxID> for your toolbox and + % prefferd API <Preffered_API> needs to be defined. + % + % elseif strcmpi(solver.toolbox,'<ToolboxID>') + % + % % - Evaluate the function (solver.name - defined in the main) with + % % parameters given above + % + % y = eval([solver.name,'(<Preffered_API>);']); + +else + printf('\nToolbox has not been registered. Please change SMALL_solver file.\n'); + return +end
--- a/config/SMALL_two_step_DL_config.m Tue Mar 20 14:50:35 2012 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,30 +0,0 @@ - - %DICTIONARY UPDATE STEP - if strcmpi(typeUpdate,'mocod') %if update is MOCOD create parameters structure - mocodParams = struct('zeta',DL.param.zeta,... %coherence regularization factor - 'eta',DL.param.eta,... %atoms norm regularization factor - 'Dprev',dico); %previous dictionary - % dico = dico_update(dico,sig,solver.solution,typeUpdate,flow,learningRate,mocodParams); - if ~isfield(DL.param,'decFcn'), DL.param.decFcn = 'none'; end - - dico = dico_update_mocod(dico,sig,solver.solution,typeUpdate,flow,learningRate,mocodParams); - - else - [dico, solver.solution] = dico_update(dico, sig, solver.solution, ... - typeUpdate, flow, learningRate); - dico = normcols(dico); - end - - switch lower(DL.param.decFcn) - case 'ink-svd' - dico = dico_decorr_symetric(dico,mu,solver.solution); - case 'grassmannian' - [n m] = size(dico); - dico = grassmannian(n,m,[],0.9,0.99,dico); - case 'shrinkgram' - dico = shrinkgram(dico,mu); - case 'iterproj' - dico = iterativeprojections(dico,mu,Problem.b1,solver.solution); - otherwise - end - \ No newline at end of file
--- a/util/SMALL_learn.m Tue Mar 20 14:50:35 2012 +0000 +++ b/util/SMALL_learn.m Tue Mar 20 14:51:31 2012 +0000 @@ -1,9 +1,9 @@ function DL = SMALL_learn(Problem,DL) -%% SMALL Dictionary Learning -% -% Function gets as input Problem and Dictionary Learning (DL) structures +%% SMALL Dictionary Learning +% +% Function gets as input Problem and Dictionary Learning (DL) structures % In Problem structure field b with the training set needs to be defined -% In DL fields with name of the toolbox and solver, and parameters file +% In DL fields with name of the toolbox and solver, and parameters file % for particular dictionary learning technique needs to be present. % % Outputs are Learned dictionary and time spent as a part of DL structure @@ -18,28 +18,31 @@ % License, or (at your option) any later version. See the file % COPYING included with this distribution for more information. %% + global SMALL_path + if (DL.profile) - fprintf('\nStarting Dictionary Learning %s... \n', DL.name); + fprintf('\nStarting Dictionary Learning %s... \n', DL.name); end - start=cputime; - tStart=tic; - - % configuration file - run([SMALL_path 'config/SMALL_learn_config.m']); - + +start=cputime; +tStart=tic; + +% toolboxes configuration file +run(fullfile(SMALL_path, 'config/SMALL_learn_config.m')); + %% % Dictionary Learning time tElapsed=toc(tStart); DL.time = cputime - start; if (DL.profile) - fprintf('\n%s finished task in %2f seconds (cpu time). \n', DL.name, DL.time); - fprintf('\n%s finished task in %2f seconds (tic-toc time). \n', DL.name, tElapsed); + fprintf('\n%s finished task in %2f seconds (cpu time). \n', DL.name, DL.time); + fprintf('\n%s finished task in %2f seconds (tic-toc time). \n', DL.name, tElapsed); end DL.time=tElapsed; -% If dictionary is given as a sparse matrix change it to full +% If dictionary is given as a sparse matrix change it to full - DL.D = full(D); - +DL.D = full(D); + end - +
--- a/util/SMALL_solve.m Tue Mar 20 14:50:35 2012 +0000 +++ b/util/SMALL_solve.m Tue Mar 20 14:51:31 2012 +0000 @@ -15,9 +15,11 @@ % published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. See the file % COPYING included with this distribution for more information. -% +% %% +global SMALL_path + if isa(Problem.A,'float') A = Problem.A; SparseLab_A=Problem.A; @@ -45,72 +47,9 @@ start=cputime; tStart=tic; -if strcmpi(solver.toolbox,'sparselab') - y = eval([solver.name,'(SparseLab_A, b, n,',solver.param,');']); -elseif strcmpi(solver.toolbox,'sparsify') - if isa(Problem.A,'float') - y = eval([solver.name,'(b, A, n,',solver.param,');']); - else - y = eval([solver.name,'(b, A, n, ''P_trans'', AT,',solver.param,');']); - end -elseif (strcmpi(solver.toolbox,'spgl1')||strcmpi(solver.toolbox,'gpsr')) - y = eval([solver.name,'(b, A,',solver.param,');']); -elseif (strcmpi(solver.toolbox,'SPAMS')) - y = eval([solver.name,'(b, A, solver.param);']); -elseif (strcmpi(solver.toolbox,'SMALL')) - if isa(Problem.A,'float') - y = eval([solver.name,'(A, b, n,',solver.param,');']); - else - y = eval([solver.name,'(A, b, n,',solver.param,',AT);']); - end -elseif (strcmpi(solver.toolbox, 'ompbox')) - G=A'*A; - epsilon=solver.param.epsilon; - maxatoms=solver.param.maxatoms; - y = eval([solver.name,'(A, b, G,epsilon,''maxatoms'',maxatoms,''checkdict'',''off'');']); -elseif (strcmpi(solver.toolbox, 'ompsbox')) - basedict = Problem.basedict; - if issparse(Problem.A) - A = Problem.A; - else - A = sparse(Problem.A); - end - G = dicttsep(basedict,A,dictsep(basedict,A,speye(size(A,2)))); - epsilon=solver.param.epsilon; - maxatoms=solver.param.maxatoms; - y = eval([solver.name,'(basedict, A, b, G,epsilon,''maxatoms'',maxatoms,''checkdict'',''off'');']); - Problem.sparse=1; -elseif (strcmpi(solver.toolbox, 'ALPS')) - if ~isa(Problem.A,'float') - % ALPS does not accept implicit dictionary definition - A = opToMatrix(Problem.A, 1); - end - [y, numiter, time, y_path] = wrapper_ALPS_toolbox(b, A, solver.param); -elseif (strcmpi(solver.toolbox, 'MMbox')) - if ~isa(Problem.A,'float') - % MMbox does not accept implicit dictionary definition - A = opToMatrix(Problem.A, 1); - end - - [y, cost] = wrapper_mm_solver(b, A, solver.param); - - - - % To introduce new sparse representation algorithm put the files in - % your Matlab path. Next, unique name <TolboxID> for your toolbox and - % prefferd API <Preffered_API> needs to be defined. - % - % elseif strcmpi(solver.toolbox,'<ToolboxID>') - % - % % - Evaluate the function (solver.name - defined in the main) with - % % parameters given above - % - % y = eval([solver.name,'(<Preffered_API>);']); - -else - printf('\nToolbox has not been registered. Please change SMALL_solver file.\n'); - return -end + +% solvers configuration file +run(fullfile(SMALL_path, 'config/SMALL_solve_config.m')); %% % Sparse representation time