Mercurial > hg > smallbox
changeset 120:5a20f4936159 sup_158_IMG_Processing_toolbox_
Merge from branch "sup_163_ssim_IMG_T_dependeny"
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Tue, 24 May 2011 16:18:21 +0100 |
parents | ceb81fd882aa (diff) 5356a6e13a25 (current diff) |
children | 38d4fbf6ae24 |
files | Problems/ImgDenoise_reconstruct.m |
diffstat | 7 files changed, 169 insertions(+), 244 deletions(-) [+] |
line wrap: on
line diff
--- a/DL/RLS-DLA/SMALL_rlsdla.m Tue May 24 16:16:36 2011 +0100 +++ b/DL/RLS-DLA/SMALL_rlsdla.m Tue May 24 16:18:21 2011 +0100 @@ -133,8 +133,8 @@ end if (show_dictionary) - dictimg = showdict(D,[8 8],round(sqrt(size(D,2))),round(sqrt(size(D,2))),'lines','highcontrast'); - figure(2); imshow(imresize(dictimg,2,'nearest')); + dictimg = SMALL_showdict(D,[8 8],round(sqrt(size(D,2))),round(sqrt(size(D,2))),'lines','highcontrast'); + figure(2); imagesc(dictimg);colormap(gray);axis off; axis image; end % Forgetting factor @@ -193,9 +193,9 @@ C = C - (alfa * u)* u'; if (show_dictionary &&(mod(i,show_iter)==0)) - dictimg = showdict(D,[8 8],... + dictimg = SMALL_showdict(D,[8 8],... round(sqrt(size(D,2))),round(sqrt(size(D,2))),'lines','highcontrast'); - figure(2); imshow(imresize(dictimg,2,'nearest')); + figure(2); imagesc(dictimg);colormap(gray);axis off; axis image; pause(0.02); end end
--- a/Problems/ImgDenoise_reconstruct.m Tue May 24 16:16:36 2011 +0100 +++ b/Problems/ImgDenoise_reconstruct.m Tue May 24 16:18:21 2011 +0100 @@ -56,10 +56,10 @@ % nnzy=sum(y,1); % figure(200);plot(sort(numD)); % figure(201);plot(sort(nnzy)); -[v.RMSErn, v.RMSEcd, v.rn_im, v.cd_im]=vmrse_type2(Problem.Original, Problem.Noisy, im); +[v.RMSErn, v.RMSEcd, v.rn_im, v.cd_im]=SMALL_vmrse_type2(Problem.Original, Problem.Noisy, im); %% output structure image+psnr %% reconstructed.Image=im; reconstructed.psnr = 20*log10(Problem.maxval * sqrt(numel(Problem.Original(:))) / norm(Problem.Original(:)-im(:))); reconstructed.vmrse=v; -%reconstructed.ssim=ssim_index(Problem.Original, im); +reconstructed.ssim=SMALL_ssim_index(Problem.Original, im); end \ No newline at end of file
--- a/util/SMALL_ImgDeNoiseResult.m Tue May 24 16:16:36 2011 +0100 +++ b/util/SMALL_ImgDeNoiseResult.m Tue May 24 16:18:21 2011 +0100 @@ -37,7 +37,7 @@ else D = SMALL.DL(i-1).D; end - dictimg = showdict(D,SMALL.Problem.blocksize,... + dictimg = SMALL_showdict(D,SMALL.Problem.blocksize,... round(sqrt(size(D,2))),round(sqrt(size(D,2))),'lines','highcontrast'); subplot(2,m,m+i);imagesc(dictimg);axis off; axis image;
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/util/SMALL_showdict.m Tue May 24 16:18:21 2011 +0100 @@ -0,0 +1,119 @@ +function x = SMALL_showdict(D,sz,n,m,varargin) +%% SMALL_SHOWDICT Display a dictionary of image patches. +%% Reimplementation of showdict function from KSVD toolbox with Image +%% Processing toolbox dependecies removed +% +% SMALL_SHOWDICT(D,SZ,N,M) displays the contents of the dictionary D, whos +% columns are 2-D image patches (in column-major order). SZ = [SX SY] is +% the size of the image patches. SHOWDICT displays the atoms on an N x M +% grid. If there are more atoms in D then only the first N*M are +% displayed. +% +% SMALL_SHOWDICT(...,'lines') separates the dictionary atoms by black lines. +% SMALL_SHOWDICT(...,'whitelines') separates the dictionary atoms by white +% lines. +% +% SMALL_SHOWDICT(...,'linewidth',W) when used with either 'lines' or +% 'whitelines' sets the width of the lines to W pixels (default=1). +% +% SMALL_SHOWDICT(...,'highcontrast') increases the contrast of the figure by +% normalizing the intensity values of each atom individually to the range +% of [0,1] (the default behavior is to normalize the values of the entire +% figure to [0,1] as one image). Note that in this way, the relative +% intensities of the atoms are not maintained. +% +% X = SMALL_SHOWDICT(...) returns a bitmat of the dictionary image without +% displaying the figure. + + +% Centre for Digital Music, Queen Mary, University of London. +% This file copyright 2011 Ivan Damnjanovic. +% +% This program is free software; you can redistribute it and/or +% modify it under the terms of the GNU General Public License as +% published by the Free Software Foundation; either version 2 of the +% License, or (at your option) any later version. See the file +% COPYING included with this distribution for more information. +% +%% + +if (size(D,2) < n*m) + D = [D zeros(size(D,1),n*m-size(D,2))]; +end + + +%%% parse input arguments %%% + +linewidth = 1; +highcontrast = 0; +drawlines = 0; +linecolor = 0; + +for i = 1:length(varargin) + if (~ischar(varargin{i})) + continue; + end + switch(varargin{i}) + case 'highcontrast' + highcontrast = 1; + case 'lines' + drawlines = 1; + case 'whitelines' + drawlines = 1; + linecolor = 1; + case 'linewidth' + linewidth = varargin{i+1}; + end +end + + + +%%% create dictionary image %%% + + +if (drawlines) + + D = [D ; nan(sz(1)*linewidth,size(D,2))]; + sz(2) = sz(2)+linewidth; + x = col2imstep(D(:,1:n*m),[n m].*sz, sz, sz); + sz = [sz(2) sz(1)]; + D = im2colstep(x',sz, sz); + D = [D ; nan(sz(1)*linewidth,size(D,2))]; + sz(2) = sz(2)+linewidth; + x = col2imstep(D(:,1:n*m),[m n].*sz,sz,sz); + x = x'; + x = x(1:end-linewidth,1:end-linewidth); + + if (highcontrast) + for i = 0:n-1 + for j = 0:m-1 + x(i*sz(1)+1:i*sz(1)+sz(1)-linewidth, j*sz(2)+1:j*sz(2)+sz(2)-linewidth) = ... + imnormalize(x(i*sz(1)+1:i*sz(1)+sz(1)-linewidth, j*sz(2)+1:j*sz(2)+sz(2)-linewidth)); + end + end + else + x = imnormalize(x); + end + + x(isnan(x)) = linecolor; + +else + + x = col2imstep(D(:,1:n*m),[n m].*sz, sz, sz); + + if (highcontrast) + for i = 0:n-1 + for j = 0:m-1 + x(i*sz(1)+1:i*sz(1)+sz(1), j*sz(2)+1:j*sz(2)+sz(2)) = ... + imnormalize(x(i*sz(1)+1:i*sz(1)+sz(1), j*sz(2)+1:j*sz(2)+sz(2))); + end + end + else + x = imnormalize(x); + end +end + + +if (nargout==0) + imagesc(dictimg);colormap(gray);axis off; axis image; +end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/util/SMALL_vmrse_type2.m Tue May 24 16:18:21 2011 +0100 @@ -0,0 +1,43 @@ +function [RMSErn, RMSEcd, rn_im, cd_im] = SMALL_vmrse_type2(orig, corr, recon) +%% Implementation of VectorRMSE type2 +% +% +% Input: +% - Original image +% - Corrupted image +% - Reconstructed Image +% +% Output: +% - RMSErn - RMSE from residual noise (noise not completely removed) +% - RMSEcd - RMSE from collateral distortion - excessive filtering +% - rn_im - image of residual noise +% - cd_im - image of collateral distortion +% +% F. Russo, "New Method for Performance Evaluation of Grayscale Image +% Denoising filters", IEEE Signal Processing Letters, vol. 17, no. 5, +% pp.417-420, May 2010 + +% Centre for Digital Music, Queen Mary, University of London. +% This file copyright 2011 Ivan Damnjanovic. +% +% This program is free software; you can redistribute it and/or +% modify it under the terms of the GNU General Public License as +% published by the Free Software Foundation; either version 2 of the +% License, or (at your option) any later version. See the file +% COPYING included with this distribution for more information. +%% + + recon_int = round(recon); + + RN1 = ((orig<recon_int)&(recon_int<=corr)); + RN2 = ((orig>recon_int)&(recon_int>=corr)); + CD1 = ((orig<recon_int)&(recon_int>corr)); + CD2 = ((orig>recon_int)&(recon_int<corr)); + + RMSErn = sqrt(sum(sum((RN1+RN2).*(orig-recon).^2)))/512; + RMSEcd = sqrt(sum(sum((CD1+CD2).*(orig-recon).^2)))/512; + rn_im=RN1+RN2; + cd_im=CD1+CD2; + +end +
--- a/util/ssim_index.m Tue May 24 16:16:36 2011 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,194 +0,0 @@ -function [mssim, ssim_map] = ssim_index(img1, img2, K, window, L) - -%======================================================================== -%SSIM Index, Version 1.0 -%Copyright(c) 2003 Zhou Wang -%All Rights Reserved. -% -%The author is with Howard Hughes Medical Institute, and Laboratory -%for Computational Vision at Center for Neural Science and Courant -%Institute of Mathematical Sciences, New York University. -% -%---------------------------------------------------------------------- -%Permission to use, copy, or modify this software and its documentation -%for educational and research purposes only and without fee is hereby -%granted, provided that this copyright notice and the original authors' -%names appear on all copies and supporting documentation. This program -%shall not be used, rewritten, or adapted as the basis of a commercial -%software or hardware product without first obtaining permission of the -%authors. The authors make no representations about the suitability of -%this software for any purpose. It is provided "as is" without express -%or implied warranty. -%---------------------------------------------------------------------- -% -%This is an implementation of the algorithm for calculating the -%Structural SIMilarity (SSIM) index between two images. Please refer -%to the following paper: -% -%Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image -%quality assessment: From error measurement to structural similarity" -%IEEE Transactios on Image Processing, vol. 13, no. 1, Jan. 2004. -% -%Kindly report any suggestions or corrections to zhouwang@ieee.org -% -%---------------------------------------------------------------------- -% -%Input : (1) img1: the first image being compared -% (2) img2: the second image being compared -% (3) K: constants in the SSIM index formula (see the above -% reference). defualt value: K = [0.01 0.03] -% (4) window: local window for statistics (see the above -% reference). default widnow is Gaussian given by -% window = fspecial('gaussian', 11, 1.5); -% (5) L: dynamic range of the images. default: L = 255 -% -%Output: (1) mssim: the mean SSIM index value between 2 images. -% If one of the images being compared is regarded as -% perfect quality, then mssim can be considered as the -% quality measure of the other image. -% If img1 = img2, then mssim = 1. -% (2) ssim_map: the SSIM index map of the test image. The map -% has a smaller size than the input images. The actual size: -% size(img1) - size(window) + 1. -% -%Default Usage: -% Given 2 test images img1 and img2, whose dynamic range is 0-255 -% -% [mssim ssim_map] = ssim_index(img1, img2); -% -%Advanced Usage: -% User defined parameters. For example -% -% K = [0.05 0.05]; -% window = ones(8); -% L = 100; -% [mssim ssim_map] = ssim_index(img1, img2, K, window, L); -% -%See the results: -% -% mssim %Gives the mssim value -% imshow(max(0, ssim_map).^4) %Shows the SSIM index map -% -%======================================================================== - - -if (nargin < 2 || nargin > 5) - ssim_index = -Inf; - ssim_map = -Inf; - return; -end - -if (size(img1) ~= size(img2)) - ssim_index = -Inf; - ssim_map = -Inf; - return; -end - -[M N] = size(img1); - -if (nargin == 2) - if ((M < 11) || (N < 11)) - ssim_index = -Inf; - ssim_map = -Inf; - return - end - window = fspecial('gaussian', 11, 1.5); % - K(1) = 0.01; % default settings - K(2) = 0.03; % - L = 255; % -end - -if (nargin == 3) - if ((M < 11) || (N < 11)) - ssim_index = -Inf; - ssim_map = -Inf; - return - end - window = fspecial('gaussian', 11, 1.5); - L = 255; - if (length(K) == 2) - if (K(1) < 0 || K(2) < 0) - ssim_index = -Inf; - ssim_map = -Inf; - return; - end - else - ssim_index = -Inf; - ssim_map = -Inf; - return; - end -end - -if (nargin == 4) - [H W] = size(window); - if ((H*W) < 4 || (H > M) || (W > N)) - ssim_index = -Inf; - ssim_map = -Inf; - return - end - L = 255; - if (length(K) == 2) - if (K(1) < 0 || K(2) < 0) - ssim_index = -Inf; - ssim_map = -Inf; - return; - end - else - ssim_index = -Inf; - ssim_map = -Inf; - return; - end -end - -if (nargin == 5) - [H W] = size(window); - if ((H*W) < 4 || (H > M) || (W > N)) - ssim_index = -Inf; - ssim_map = -Inf; - return - end - if (length(K) == 2) - if (K(1) < 0 || K(2) < 0) - ssim_index = -Inf; - ssim_map = -Inf; - return; - end - else - ssim_index = -Inf; - ssim_map = -Inf; - return; - end -end - -C1 = (K(1)*L)^2; -C2 = (K(2)*L)^2; -window = window/sum(sum(window)); -img1 = double(img1); -img2 = double(img2); - -mu1 = filter2(window, img1, 'valid'); -mu2 = filter2(window, img2, 'valid'); -mu1_sq = mu1.*mu1; -mu2_sq = mu2.*mu2; -mu1_mu2 = mu1.*mu2; -sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq; -sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq; -sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2; - -if (C1 > 0 & C2 > 0) - ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2)); -else - numerator1 = 2*mu1_mu2 + C1; - numerator2 = 2*sigma12 + C2; - denominator1 = mu1_sq + mu2_sq + C1; - denominator2 = sigma1_sq + sigma2_sq + C2; - ssim_map = ones(size(mu1)); - index = (denominator1.*denominator2 > 0); - ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index)); - index = (denominator1 ~= 0) & (denominator2 == 0); - ssim_map(index) = numerator1(index)./denominator1(index); -end - -mssim = mean2(ssim_map); - -return \ No newline at end of file
--- a/util/vmrse_type2.m Tue May 24 16:16:36 2011 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,43 +0,0 @@ -function [RMSErn, RMSEcd, rn_im, cd_im] = vmrse_type2(orig, corr, recon) - -%%% Implementation of VectorRMSE type2 -% -% Centre for Digital Music, Queen Mary, University of London. -% This file copyright 2011 Ivan Damnjanovic. -% -% This program is free software; you can redistribute it and/or -% modify it under the terms of the GNU General Public License as -% published by the Free Software Foundation; either version 2 of the -% License, or (at your option) any later version. See the file -% COPYING included with this distribution for more information. -% -% Input: -% - Original image -% - Corrupted image -% - Reconstructed Image -% -% Output: -% - RMSErn - RMSE from residual noise (noise not completely removed) -% - RMSEcd - RMSE from collateral distortion - excessive filtering -% - rn_im - image of residual noise -% - cd_im - image of collateral distortion -% -% F. Russo, "New Method for Performance Evaluation of Grayscale Image -% Denoising filters", IEEE Signal Processing Letters, vol. 17, no. 5, -% pp.417-420, May 2010 -%% - - recon_int = round(recon); - - RN1 = ((orig<recon_int)&(recon_int<=corr)); - RN2 = ((orig>recon_int)&(recon_int>=corr)); - CD1 = ((orig<recon_int)&(recon_int>corr)); - CD2 = ((orig>recon_int)&(recon_int<corr)); - - RMSErn = sqrt(sum(sum((RN1+RN2).*(orig-recon).^2)))/512; - RMSEcd = sqrt(sum(sum((CD1+CD2).*(orig-recon).^2)))/512; - rn_im=RN1+RN2; - cd_im=CD1+CD2; - -end -