Mercurial > hg > smallbox
changeset 55:435da1dc71a0
(none)
author | idamnjanovic |
---|---|
date | Mon, 14 Mar 2011 16:55:49 +0000 |
parents | 4fef33632323 |
children | 40bcdc445c91 |
files | DL/RLS-DLA/SolveFISTA.m |
diffstat | 1 files changed, 0 insertions(+), 211 deletions(-) [+] |
line wrap: on
line diff
--- a/DL/RLS-DLA/SolveFISTA.m Mon Mar 14 16:53:56 2011 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,211 +0,0 @@ -% Copyright ©2010. The Regents of the University of California (Regents). -% All Rights Reserved. Contact The Office of Technology Licensing, -% UC Berkeley, 2150 Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, -% (510) 643-7201, for commercial licensing opportunities. - -% Authors: Arvind Ganesh, Allen Y. Yang, Zihan Zhou. -% Contact: Allen Y. Yang, Department of EECS, University of California, -% Berkeley. <yang@eecs.berkeley.edu> - -% IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, -% SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, -% ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF -% REGENTS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - -% REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED -% TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A -% PARTICULAR PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, -% PROVIDED HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO -% PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. - -%% This function is modified from Matlab code proximal_gradient_bp - -function [x_hat,nIter] = SolveFISTA(A,b, varargin) - -% b - m x 1 vector of observations/data (required input) -% A - m x n measurement matrix (required input) -% -% tol - tolerance for stopping criterion. -% - DEFAULT 1e-7 if omitted or -1. -% maxIter - maxilambdam number of iterations -% - DEFAULT 10000, if omitted or -1. -% lineSearchFlag - 1 if line search is to be done every iteration -% - DEFAULT 0, if omitted or -1. -% continuationFlag - 1 if a continuation is to be done on the parameter lambda -% - DEFAULT 1, if omitted or -1. -% eta - line search parameter, should be in (0,1) -% - ignored if lineSearchFlag is 0. -% - DEFAULT 0.9, if omitted or -1. -% lambda - relaxation parameter -% - ignored if continuationFlag is 1. -% - DEFAULT 1e-3, if omitted or -1. -% outputFileName - Details of each iteration are dumped here, if provided. -% -% x_hat - estimate of coeeficient vector -% numIter - number of iterations until convergence -% -% -% References -% "Robust PCA: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization", J. Wright et al., preprint 2009. -% "An Accelerated Proximal Gradient Algorithm for Nuclear Norm Regularized Least Squares problems", K.-C. Toh and S. Yun, preprint 2009. -% -% Arvind Ganesh, Summer 2009. Questions? abalasu2@illinois.edu - -DEBUG = 0 ; - -STOPPING_GROUND_TRUTH = -1; -STOPPING_DUALITY_GAP = 1; -STOPPING_SPARSE_SUPPORT = 2; -STOPPING_OBJECTIVE_VALUE = 3; -STOPPING_SUBGRADIENT = 4; -STOPPING_DEFAULT = STOPPING_SUBGRADIENT; - -stoppingCriterion = STOPPING_DEFAULT; -maxIter = 1000 ; -tolerance = 1e-3; -[m,n] = size(A) ; -x0 = zeros(n,1) ; -xG = []; - -%% Initializing optimization variables -t_k = 1 ; -t_km1 = 1 ; -L0 = 1 ; -G = A'*A ; -nIter = 0 ; -c = A'*b ; -lambda0 = 0.99*L0*norm(c,inf) ; -eta = 0.6 ; -lambda_bar = 1e-4*lambda0 ; -xk = zeros(n,1) ; -lambda = lambda0 ; -L = L0 ; -beta = 1.5 ; - -% Parse the optional inputs. -if (mod(length(varargin), 2) ~= 0 ), - error(['Extra Parameters passed to the function ''' mfilename ''' lambdast be passed in pairs.']); -end -parameterCount = length(varargin)/2; - -for parameterIndex = 1:parameterCount, - parameterName = varargin{parameterIndex*2 - 1}; - parameterValue = varargin{parameterIndex*2}; - switch lower(parameterName) - case 'stoppingcriterion' - stoppingCriterion = parameterValue; - case 'groundtruth' - xG = parameterValue; - case 'tolerance' - tolerance = parameterValue; - case 'linesearchflag' - lineSearchFlag = parameterValue; - case 'lambda' - lambda_bar = parameterValue; - case 'maxiteration' - maxIter = parameterValue; - case 'isnonnegative' - isNonnegative = parameterValue; - case 'continuationflag' - continuationFlag = parameterValue; - case 'initialization' - xk = parameterValue; - if ~all(size(xk)==[n,1]) - error('The dimension of the initial xk does not match.'); - end - case 'eta' - eta = parameterValue; - if ( eta <= 0 || eta >= 1 ) - disp('Line search parameter out of bounds, switching to default 0.9') ; - eta = 0.9 ; - end - otherwise - error(['The parameter ''' parameterName ''' is not recognized by the function ''' mfilename '''.']); - end -end -clear varargin - -if stoppingCriterion==STOPPING_GROUND_TRUTH && isempty(xG) - error('The stopping criterion must provide the ground truth value of x.'); -end - -keep_going = 1 ; -nz_x = (abs(xk)> eps*10); -f = 0.5*norm(b-A*xk)^2 + lambda_bar * norm(xk,1); -xkm1 = xk; -while keep_going && (nIter < maxIter) - nIter = nIter + 1 ; - - yk = xk + ((t_km1-1)/t_k)*(xk-xkm1) ; - - stop_backtrack = 0 ; - - temp = G*yk - c ; % gradient of f at yk - - while ~stop_backtrack - - gk = yk - (1/L)*temp ; - - xkp1 = soft(gk,lambda/L) ; - - temp1 = 0.5*norm(b-A*xkp1)^2 ; - temp2 = 0.5*norm(b-A*yk)^2 + (xkp1-yk)'*temp + (L/2)*norm(xkp1-yk)^2 ; - - if temp1 <= temp2 - stop_backtrack = 1 ; - else - L = L*beta ; - end - - end - - switch stoppingCriterion - case STOPPING_GROUND_TRUTH - keep_going = norm(xG-xkp1)>tolerance; - case STOPPING_SUBGRADIENT - sk = L*(yk-xkp1) + G*(xkp1-yk) ; - keep_going = norm(sk) > tolerance*L*max(1,norm(xkp1)); - case STOPPING_SPARSE_SUPPORT - % compute the stopping criterion based on the change - % of the number of non-zero components of the estimate - nz_x_prev = nz_x; - nz_x = (abs(xkp1)>eps*10); - num_nz_x = sum(nz_x(:)); - num_changes_active = (sum(nz_x(:)~=nz_x_prev(:))); - if num_nz_x >= 1 - criterionActiveSet = num_changes_active / num_nz_x; - keep_going = (criterionActiveSet > tolerance); - end - case STOPPING_OBJECTIVE_VALUE - % compute the stopping criterion based on the relative - % variation of the objective function. - prev_f = f; - f = 0.5*norm(b-A*xkp1)^2 + lambda_bar * norm(xk,1); - criterionObjective = abs(f-prev_f)/(prev_f); - keep_going = (criterionObjective > tolerance); - case STOPPING_DUALITY_GAP - error('Duality gap is not a valid stopping criterion for PGBP.'); - otherwise - error('Undefined stopping criterion.'); - end - - lambda = max(eta*lambda,lambda_bar) ; - - - t_kp1 = 0.5*(1+sqrt(1+4*t_k*t_k)) ; - - t_km1 = t_k ; - t_k = t_kp1 ; - xkm1 = xk ; - xk = xkp1 ; -end - -x_hat = xk ; - -function y = soft(x,T) -if sum(abs(T(:)))==0 - y = x; -else - y = max(abs(x) - T, 0); - y = sign(x).*y; -end