Mercurial > hg > smallbox
changeset 154:0de08f68256b ivand_dev
ALPS toolbox - Algebraic Pursuit added to smallbox
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Fri, 12 Aug 2011 11:17:47 +0100 |
parents | af307f247ac7 |
children | b14209313ba4 |
files | examples/ALPS solvers tests/SMALL_solver_test_ALPS.m examples/AudioInpainting/Audio_Declipping_Example.m toolboxes/alps/ALPS/AlgebraicPursuit.m toolboxes/alps/ALPS/cgsolve.m toolboxes/alps/ALPS/configuration.m toolboxes/alps/ALPS/infty_ALPS.m toolboxes/alps/ALPS/l_ALPS.m toolboxes/alps/ALPS/one_ALPS.m toolboxes/alps/ALPS/thresh.m toolboxes/alps/ALPS/zero_ALPS.m toolboxes/alps/ALPSbenchmark_errornorm_vs_iter.m toolboxes/alps/ALPSdemo.m toolboxes/alps/README toolboxes/alps/Report_bibtex.bib toolboxes/alps/generate_matrix.m toolboxes/alps/generate_vector.m toolboxes/wrapper_ALPS_toolbox.m util/SMALL_plot.m util/SMALL_solve.m |
diffstat | 19 files changed, 2073 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/examples/ALPS solvers tests/SMALL_solver_test_ALPS.m Fri Aug 12 11:17:47 2011 +0100 @@ -0,0 +1,163 @@ +%% Example test of solvers from different toolboxes on Sparco problem 6 +% +% The main purpose of this example is to show how to use SMALL structure +% to solve SPARCO compressed sensing problems (1-11) and compare results +% from different solvers. +% To generate SMALL.Problem part of structure you can use generateProblem +% function from Sparco toolbox giving the problem number and any +% additional parameters you might want to change. Alternatively, you can +% might want to consult sparco documentation to write a problem by +% yourself. There are four fields the must be specified in SMALL.Problem +% - A, b, sizeA and reconstruct. +% +% To generate SMALL.solver part of the structure you must specify three +% fields: +% +% SMALL.solver.toolbox - string with toolbox name is needed because +% different toolboxes are calling solver +% functions in different ways. +% SMALL.solver.name - its string representing solver name (e.g. +% SolveOMP) +% SMALL.solver.param - string that contains optional parameters for +% particular solver (all parameters you want to +% specify except A, b and size of solution) +% +% Every call to SMALL_solve function will generate following output: +% +% SMALL.solver.solution - contains solution vector x +% SMALL.solver.reconstructed - vector containing signal reconstructed +% from the solution +% SMALL.solver.time - time that solver spent to find the solution +% +% SMALL_plot function plots the SMALL.solver.solution and reconstructed +% against original signal. +% +% In this particular example we are testing SMALL_cgp, SMALL_chol, +% SolveOMP form SparseLab and greed_pcgp form Sparsify against "PROB006 +% Daubechies basis, Gaussian ensemble measurement basis, piecewise cubic +% polynomial signal" from Sparco. +% +% + + +% Centre for Digital Music, Queen Mary, University of London. +% This file copyright 2009 Ivan Damnjanovic. +% +% This program is free software; you can redistribute it and/or +% modify it under the terms of the GNU General Public License as +% published by the Free Software Foundation; either version 2 of the +% License, or (at your option) any later version. See the file +% COPYING included with this distribution for more information. +%% + +fprintf('\n\nExample test of SMALL solvers against their counterparts on Sparco problems.\n\n'); + +%% +% Generate SPARCO problem +clear + +SMALL.Problem = generateProblem(6, 'P', 6, 'm', 2*500,'n',2*1024, 'show'); + +SMALL.Problem.A = opToMatrix(SMALL.Problem.A, 1); + +%% +i=1; +%% +% ALPS test +SMALL.solver(i) = SMALL_init_solver; +SMALL.solver(i).toolbox = 'ALPS'; +SMALL.solver(i).name = 'AlgebraicPursuit'; + +% In the following string all parameters except matrix, measurement vector +% and size of solution need to be specified. If you are not sure which +% parameters are needed for particular solver type "help <Solver name>" in +% MATLAB command line + +SMALL.solver(i).param=struct(... + 'sparsity', 125,... + 'memory', 0,... + 'mode', 1,... + 'iternum', 50,... + 'tolerance', 1e-14'); + +SMALL.solver(i)=SMALL_solve(SMALL.Problem,SMALL.solver(i)); + + +i=i+1; +%% +% SMALL Conjugate Gradient test +SMALL.solver(i)=SMALL_init_solver; +SMALL.solver(i).toolbox='SMALL'; +SMALL.solver(i).name='SMALL_cgp'; + +% In the following string all parameters except matrix, measurement vector +% and size of solution need to be specified. If you are not sure which +% parameters are needed for particular solver type "help <Solver name>" in +% MATLAB command line + +SMALL.solver(i).param='200, 1e-14'; + +SMALL.solver(i)=SMALL_solve(SMALL.Problem,SMALL.solver(i)); + + +i=i+1; + +%% +% SolveOMP from SparseLab test + +SMALL.solver(i)=SMALL_init_solver; +SMALL.solver(i).toolbox='SparseLab'; +SMALL.solver(i).name='SolveOMP'; + +% In the following string all parameters except matrix, measurement vector +% and size of solution need to be specified. If you are not sure which +% parameters are needed for particular solver type "help <Solver name>" in +% MATLAB command line + +SMALL.solver(i).param='200, 0, 0, 0, 1e-14'; + +SMALL.solver(i)=SMALL_solve(SMALL.Problem, SMALL.solver(i)); + +i=i+1; + +%% +% SMALL OMP with Cholesky update test +SMALL.solver(i)=SMALL_init_solver; +SMALL.solver(i).toolbox='SMALL'; +SMALL.solver(i).name='SMALL_chol'; + +% In the following string all parameters except matrix, measurement vector +% and size of solution need to be specified. If you are not sure which +% parameters are needed for particular solver type "help <Solver name>" in +% MATLAB command line + +SMALL.solver(i).param='200, 1e-14'; + +SMALL.solver(i)=SMALL_solve(SMALL.Problem, SMALL.solver(i)); + +i=i+1; + +%% +% greed_pcgp from Sparsify test + +SMALL.solver(i)=SMALL_init_solver; +SMALL.solver(i).toolbox='Sparsify'; +SMALL.solver(i).name='greed_pcgp'; + +% In the following string all parameters except matrix, measurement vector +% and size of solution need to be specified. If you are not sure which +% parameters are needed for particular solver type "help <Solver name>" in +% MATLAB command line + +SMALL.solver(i).param='''stopCrit'', ''M'', ''stopTol'', 200'; + +SMALL.solver(i)=SMALL_solve(SMALL.Problem, SMALL.solver(i)); + +%% + +SMALL_plot(SMALL); + + + + +
--- a/examples/AudioInpainting/Audio_Declipping_Example.m Fri Jul 29 12:35:52 2011 +0100 +++ b/examples/AudioInpainting/Audio_Declipping_Example.m Fri Aug 12 11:17:47 2011 +0100 @@ -49,7 +49,7 @@ % Defining the Problem structure -SMALL.Problem = generateAudioDeclippingProblem('male01_8kHz.wav', 0.6, 256, 0.5, @wRect, @wSine, @wRect, @Gabor_Dictionary, 2); +SMALL.Problem = generateAudioDeclippingProblem('', 0.6, 256, 0.5, @wRect, @wSine, @wRect, @Gabor_Dictionary, 2); for idxSolver = 1:4
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/alps/ALPS/AlgebraicPursuit.m Fri Aug 12 11:17:47 2011 +0100 @@ -0,0 +1,264 @@ +function [x_hat, numiter, time, x_path] = AlgebraicPursuit(y, Phi, K, varargin) +% ========================================================================= +% Algebraic Pursuit algorithms - Beta Version +% ========================================================================= +% Algebraic Pursuit (ALPS) algorithms are accelerated hard thresholding methods +% on sparse recovery of linear inverse systems. In particular, let +% Phi : M x N real matrix (M < N) +% x* : N x 1 K-sparse data vector +% n : N x 1 additive noise vector +% then, y = Phi x* + n is the undersampled M x 1 measurement vector. ALPS +% solve the following minimization problem +% minimize ||y - Phi x||^2 subject to x is K-sparse vector. +% +% Detailed discussion on the algorithm can be found in +% [1] "On Accelerated Hard Thresholding Methods for Sparse Approximation", written +% by Volkan Cevher, Technical Report, 2011. +% ========================================================================= +% INPUT ARGUMENTS: +% y M x 1 undersampled measurement vector. +% Phi M x N regression matrix. +% K Sparsity of underlying vector x* or desired +% sparsity of solution. +% varargin Set of parameters. These are: +% +% memory,... Memory (momentum) of proposed algorithm. +% Possible values are 0,1,'infty' for memoryless, +% one memory and infinity memory ALPS, +% respectively. Default value: memory = 0. +% tol,... Early stopping tolerance. Default value: tol = +% 1-e5. +% ALPSiters,... Maximum number of algorithm iterations. Default +% value: 300. +% mode, ... According to [1], possible values are +% [0,1,2,4,5,6]. This value comes from the binary +% representation of the parameters: +% (solveNewtob, gradientDescentx, solveNewtonx), +% which are explained next. Default value = 0. +% mu,... Variable that controls the step size selection. +% When mu = 0, step size is computed adaptively +% per iteration. Default value: mu = 0. +% tau,... Variable that controls the momentum in +% non-memoryless case. Ignored in memoryless +% case. User can insert as value a function handle on tau. +% Description given below. Default value: tau = -1. +% CGiters,... Maximum iterations for Conjugate-Gradients method. +% CGtol,... Tolerance variable for Conjugate-Gradients method. +% verbose verbose = 1 prints out execution infromation. +% ========================================================================= +% DESCRIPTION OF MODE VARIABLE: +% solveNewtonb,... If solveNewtonb == 1: Corresponds to solving a +% Newton system restricted to a sparse support. +% It is implemented via conjugate gradients. If +% solveNewtonb == 0: Step size selection as +% described in eqs. (12) and (13) in [1]. Default +% value: solveNewtonb = 0. For infty memory case, +% solveNewtonb = 0. +% gradientDescentx,... If gradientDescentx == 1: single gradient +% update of x_{i+1} restricted ot its support +% with line search. Default value: +% gradientDescentx = 1. +% solveNewtonx,... If solveNewtonx == 1: Akin to Hard Thresholding +% Pursuit (c.f. Simon Foucart, "Hard Thresholding +% Pursuit," preprint, 2010). Default vale: +% solveNewtonx = 0. +% ========================================================================= +% DESCRIPTION OF SPECIAL TAU VALUES: +% tau = -1,... Tau computed as the minimized of the objective +% function: +% +% <u - Ax_i, Phi(x_i - x_{i-1})> +% tau = -----------------------------. +% <u - Ax_i, Phi(x_i - x_{i-1})> +% +% tau = 0,... Follows FISTA weight configuration at each +% iteration. For more information, please read "A +% Fast Iterative Shrinkage-Thresholding Algorithm +% for Linear Inverse Problems", written by A. +% Beck and M. Teboulle, SIAM J. Imaging Sciences, +% vol. 2, no. 1, 2009. +% ========================================================================= +% OUTPUT ARGUMENTS: +% x_hat N x 1 recovered K-sparse vector. +% numiter Number of iterations executed. +% time Execution time in seconds. +% x_path Keeps a series of computed N x 1 K-sparse vectors +% until the end of the iterative process. +% ========================================================================= +% 01/04/2011, by Anastasios Kyrillidis. anastasios.kyrillidis@epfl.ch, EPFL. +% ========================================================================= +% cgsolve.m is written by Justin Romberg, Caltech, Oct. 2005. +% Email: jrom@acm.caltech.edu +% ========================================================================= +% This work was supported in part by the European Commission under Grant +% MIRG-268398 and DARPA KeCoM program #11-DARPA-1055. VC also would like +% to acknowledge Rice University for his Faculty Fellowship. +% ========================================================================= + +x_hat = 0; +time = 0; +x_path = 0; + +params.memory = 0; +params.tol = 1e-5; +params.ALPSiters = 300; +params.mode = 0; +params.tau = 1/2; +params.memory = 0; +params.cg_maxiter = 50; +params.cg_tol = 1e-8; +params.useCG = 0; +params.verbose = 0; +params.mu = 0; + +for in_arg = 1:2:length(varargin) + if (strcmp(varargin{in_arg}, 'memory')) + params.memory = varargin{in_arg+1}; + end + if (strcmp(varargin{in_arg}, 'mode')) + params.mode = varargin{in_arg+1}; + end + if (strcmp(varargin{in_arg}, 'tolerance')) + params.tol = varargin{in_arg+1}; + end + if (strcmp(varargin{in_arg}, 'ALPSiterations')) + params.ALPSiters = varargin{in_arg+1}; + end + if (strcmp(varargin{in_arg}, 'tau')) + params.tau = varargin{in_arg+1}; + end + if (strcmp(varargin{in_arg}, 'mu')) + params.mu = varargin{in_arg+1}; + end + if (strcmp(varargin{in_arg}, 'useCG')) + params.useCG = varargin{in_arg+1}; + end + if (strcmp(varargin{in_arg}, 'CGiters')) + params.cg_maxiter = varargin{in_arg+1}; + end + if (strcmp(varargin{in_arg}, 'CGtol')) + params.cg_tol = varargin{in_arg+1}; + end + if (strcmp(varargin{in_arg}, 'verbose')) + params.verbose = varargin{in_arg+1}; + end; +end; + +%% Check input + +if (ischar(params.memory)) + if ~(sum(params.memory == 'infty') == 5) + disp('ERROR: Memory variable takes positive integer values or "infty" value.'); + numiter = -1; + return; + end; +elseif (params.memory < 0 || ~isinteger(uint8(params.memory))) + disp('ERROR: Memory variable takes positive integer values or "infty" value.'); + numiter = -1; + return; +end; + +if (params.mode ~= 0 && params.mode ~= 1 && params.mode ~= 2 && params.mode ~= 4 && params.mode ~= 5 && params.mode ~= 6) + disp('ERROR: Mode variable takes values from range [0,1,2,4,5,6].'); + numiter = -1; + return; +end; + +if (params.tol < 0 || ~isnumeric(params.tol)) + disp('ERROR: tolerance variable must be positive.'); + numiter = -1; + return; +end; + + +if (params.mode == 0 || params.mode == 2) + params.useCG = 0; +end; + +y = y(:); + +M_y = length(y); +[M_Phi, tmpArg] = size(Phi); + +if (params.mode == 4 || params.mode == 5 || params.mode == 6) + if (M_Phi < 2*K) + disp('WARNING: Newton system may be ill-conditioned... Press any key to continue'); + pause; + end; +end; + +[params.solveNewtonb, params.gradientDescentx, params.solveNewtonx] = configuration(params.mode); + +if (M_y ~= M_Phi) + error('Inconsistent sampling matrix...'); +end; + +switch params.memory + case 0, + tic; + [x_hat, numiter, x_path] = zero_ALPS(y, Phi, K, params); + time = toc; + if (params.verbose == 1) + str = sprintf('%d-ALPS(%d) time: %s', params.memory, params.mode, num2str(time)); + disp(str); + str = sprintf('Number of iterations: %d', numiter); + disp(str); + end; + case 1, + tic; + [x_hat, numiter, x_path] = one_ALPS(y, Phi, K, params); + time = toc; + if (params.verbose == 1) + if (isa(params.tau,'float')) + if (params.tau == 0) + str = sprintf('%d-ALPS(%d) - fista tau - time: %s', params.memory, params.mode, num2str(time)); + elseif (params.tau == -1) + str = sprintf('%d-ALPS(%d) - optimized tau - time: %s', params.memory, params.mode, num2str(time)); + else + str = sprintf('%d-ALPS(%d) - tau = %.3f - time: %s', params.memory, params.mode, params.tau, num2str(time)); + end; + elseif (isa(params.tau, 'function_handle')) + str = sprintf('%d-ALPS(%d) - user derfined tau - time: %s', params.memory, params.mode, num2str(time)); + end; + disp(str); + str = sprintf('Number of iterations: %d', numiter); + disp(str); + end; + case 'infty', + tic; + [x_hat, numiter, x_path] = infty_ALPS(y, Phi, K, params); + time = toc; + if (params.verbose == 1) + if (isa(params.tau,'float')) + if (params.tau == -1) + str = sprintf('infty-ALPS(%d) - optimized tau - time: %s', params.mode, num2str(time)); + else + str = sprintf('infty-ALPS(%d) - tau = %.3f - time: %s', params.mode, params.tau, num2str(time)); + end; + elseif (isa(params.tau,'function_handle')) + str = sprintf('infty-ALPS(%d) - user derfined tau - time: %s', params.mode, num2str(time)); + end; + disp(str); + str = sprintf('Number of iterations: %d', numiter); + disp(str); + end; + otherwise + tic; + [x_hat, numiter, x_path] = l_ALPS(y, Phi, K, params); + time = toc; + if (params.verbose == 1) + if (isa(params.tau,'float')) + if (params.tau == -1) + str = sprintf('%d-ALPS(%d) - optimized tau - time: %s', params.memory, params.mode, num2str(time)); + else + str = sprintf('%d-ALPS(%d) - tau = %.3f - time: %s', params.memory, params.mode, params.tau, num2str(time)); + end; + elseif (isa(params.tau,'function_handle')) + str = sprintf('%d-ALPS(%d) - user derfined tau - time: %s', params.memory, params.mode, num2str(time)); + end; + disp(str); + str = sprintf('Number of iterations: %d', numiter); + disp(str); + end; +end; +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/alps/ALPS/cgsolve.m Fri Aug 12 11:17:47 2011 +0100 @@ -0,0 +1,76 @@ +% cgsolve.m +% +% Solve a symmetric positive definite system Ax = b via conjugate gradients. +% +% Usage: [x, res, iter] = cgsolve(A, b, tol, maxiter, verbose) +% +% A - Either an NxN matrix, or a function handle. +% +% b - N vector +% +% tol - Desired precision. Algorithm terminates when +% norm(Ax-b)/norm(b) < tol . +% +% maxiter - Maximum number of iterations. +% +% verbose - If 0, do not print out progress messages. +% Default = 1. +% +% Written by: Justin Romberg, Caltech +% Email: jrom@acm.caltech.edu +% Created: October 2005 +% + +function [x, res, iter] = cgsolve(A, b, tol, maxiter, verbose) + +if (nargin < 5), verbose = 1; end + +implicit = isa(A,'function_handle'); + +x = zeros(length(b),1); +r = b; +d = r; +delta = r'*r; +delta0 = b'*b; +numiter = 0; +bestx = x; +bestres = sqrt(delta/delta0); +while ((numiter < maxiter) & (delta > tol^2*delta0)) + + % q = A*d + if (implicit), q = A(d); else, q = A*d; end + + alpha = delta/(d'*q); + x = x + alpha*d; + + if (mod(numiter+1,50) == 0) + % r = b - Aux*x + if (implicit), r = b - A(x); else, r = b - A*x; end + else + r = r - alpha*q; + end + + deltaold = delta; + delta = r'*r; + beta = delta/deltaold; + d = r + beta*d; + numiter = numiter + 1; + if (sqrt(delta/delta0) < bestres) + bestx = x; + bestres = sqrt(delta/delta0); + end + + if ((verbose) & (mod(numiter,50)==0)) + disp(sprintf('cg: Iter = %d, Best residual = %8.3e, Current residual = %8.3e', ... + numiter, bestres, sqrt(delta/delta0))); + end + +end + +if (verbose) + disp(sprintf('cg: Iterations = %d, best residual = %14.8e', numiter, bestres)); +end +x = bestx; +res = bestres; +iter = numiter; +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/alps/ALPS/configuration.m Fri Aug 12 11:17:47 2011 +0100 @@ -0,0 +1,28 @@ +function [solveNewtonb, gradientDescentx, solveNewtonx] = configuration(mode) +% Function that maps 'mode' value into (SolveNewtonb, GradientDescentx, SolveNewtonx) configuration + +if (mode == 0) + solveNewtonb = 0; + gradientDescentx = 0; + solveNewtonx = 0; +elseif (mode == 1) + solveNewtonb = 0; + gradientDescentx = 0; + solveNewtonx = 1; +elseif (mode == 2) + solveNewtonb = 0; + gradientDescentx = 1; + solveNewtonx = 0; +elseif (mode == 4) + solveNewtonb = 1; + gradientDescentx = 0; + solveNewtonx = 0; +elseif (mode == 5) + solveNewtonb = 1; + gradientDescentx = 0; + solveNewtonx = 1; +elseif (mode == 6) + solveNewtonb = 1; + gradientDescentx = 1; + solveNewtonx = 0; +end;
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/alps/ALPS/infty_ALPS.m Fri Aug 12 11:17:47 2011 +0100 @@ -0,0 +1,256 @@ +function [x_hat, numiter, x_path] = infty_ALPS(y, Phi, K, params) +% ========================================================================= +% infty-ALPS(#) algorithm - Beta Version +% ========================================================================= +% Algebraic Pursuit (ALPS) algorithm with infty-memory acceleration. +% +% Detailed discussion on the algorithm can be found in +% [1] "On Accelerated Hard Thresholding Methods for Sparse Approximation", written +% by Volkan Cevher, Technical Report, 2011. +% ========================================================================= +% INPUT ARGUMENTS: +% y M x 1 undersampled measurement vector. +% Phi M x N regression matrix. +% K Sparsity of underlying vector x* or desired +% sparsity of solution. +% params Structure of parameters. These are: +% +% tol,... Early stopping tolerance. Default value: tol = +% 1-e5 +% ALPSiters,... Maximum number of algorithm iterations. Default +% value: 300. +% solveNewtonb,... Value: solveNewtonb = 0. Not used in infty +% methods. +% gradientDescentx,... If gradientDescentx == 1: single gradient +% update of x_{i+1} restricted ot its support with +% line search. Default value: gradientDescentx = +% 1. +% solveNewtonx,... If solveNewtonx == 1: Akin to Hard Thresholding Pursuit +% (c.f. Simon Foucart, "Hard Thresholding Pursuit," +% preprint, 2010). Default vale: solveNewtonx = 0 +% tau,... Variable that controls the momentum in +% non-memoryless case. Ignored in memoryless +% case. Default value: tau = 1/2. +% Special cases: +% - tau = -1: momentum step size is automatically +% optimized in every step. +% - tau as a function handle: user defined +% behavior of tau momentum term. +% mu,... Variable that controls the step size selection. +% When mu = 0, step size is computed adaptively +% per iteration. Default value: mu = 0. +% cg_maxiter,... Maximum iterations for Conjugate-Gradients method. +% cg_tol Tolerance variable for Conjugate-Gradients method. +% ========================================================================= +% OUTPUT ARGUMENTS: +% x_hat N x 1 recovered K-sparse vector. +% numiter Number of iterations executed. +% x_path Keeps a series of computed N x 1 K-sparse vectors +% until the end of the iterative process. +% ========================================================================= +% 01/04/2011, by Anastasios Kyrillidis. anastasios.kyrillidis@epfl.ch, EPFL. +% ========================================================================= +% cgsolve.m is written by Justin Romberg, Caltech, Oct. 2005. +% Email: jrom@acm.caltech.edu +% ========================================================================= +% This work was supported in part by the European Commission under Grant +% MIRG-268398 and DARPA KeCoM program #11-DARPA-1055. VC also would like +% to acknowledge Rice University for his Faculty Fellowship. +% ========================================================================= + +[~,N] = size(Phi); + +%% Initialize transpose of measurement matrix + +Phi_t = Phi'; + +%% Initialize to zero vector +x_cur = zeros(N,1); +y_cur = zeros(N,1); +X_i = []; + +x_path = zeros(N, params.ALPSiters); + +%% CG params +if (params.solveNewtonx == 1 || params.solveNewtonb == 1) + cg_verbose = 0; + cg_A = Phi_t*Phi; + cg_b = Phi_t*y; +end; + +%% Determine momentum step size selection strategy +optimizeTau = 0; +function_tau = 0; + +if (isa(params.tau,'float')) + if (params.tau == -1) + optimizeTau = 1; + end; +elseif (isa(params.tau, 'function_handle')) + function_tau = 1; +end; + +%% Determine step size selection strategy +function_mu = 0; +adaptive_mu = 0; + +if (isa(params.mu,'float')) + function_mu = 0; + if (params.mu == 0) + adaptive_mu = 1; + else + adaptive_mu = 0; + end; +elseif (isa(params.mu,'function_handle')) + function_mu = 1; +end; + +%% Help variables +complementary_Xi = ones(N,1); +setXi = zeros(N,1); +setYi = zeros(N,1); + +i = 1; +%% infty-ALPS(#) +while (i <= params.ALPSiters) + x_path(:,i) = x_cur; + x_prev = x_cur; + + % Compute the residual + if (i == 1) + res = y; + else + Phi_x_cur = Phi(:,X_i)*x_cur(X_i); + res = y - Phi_x_cur; + end; + + % Compute the derivative + der = Phi_t*res; + + % Determine S_i set via eq. (11) + complementary_Xi(X_i) = 0; + [~, ind_der] = sort(abs(der).*complementary_Xi, 'descend'); + complementary_Xi(X_i) = 1; + S_i = [X_i; ind_der(1:K)]; + + ider = der(S_i); + + setder = zeros(N,1); + setder(S_i) = 1; + if (adaptive_mu) + % Step size selection via eq. (12) and eq. (13) + Pder = Phi(:,S_i)*ider; + mu_bar = ider'*ider/(Pder'*Pder); + end; + + iy_cur = y_cur.*setYi; + if (~function_tau) % If tau is not a function handle... + if (optimizeTau) % Compute optimized tau + + % tau = argmin || u - Phi(x_i + y_i) || + % = <Phi*y_i, u - Phi(x_i - mu/2 * grad_Si f(xi))>/||Phi*y_i||^2 + + if (i == 1) + params.tau = 0; + else + % u - Phi*(x_i - mu/2 grad_Si f(xi)) = u - Phi*b + if (adaptive_mu) + b = x_cur(S_i) + mu_bar*ider; % Non-zero elems: S_i + elseif (function_mu) + b = x_cur(S_i) + params.mu(i)*ider; + else b = x_cur(S_i) + params.mu*ider; + end; + + y_Phi_b = y - Phi(:,S_i)*b; + Phi_y_prev = Phi(:,Y_i)*y_cur(Y_i); % Phi * y_i + params.tau = y_Phi_b'*Phi_y_prev/(Phi_y_prev'*Phi_y_prev); + end; + + if (adaptive_mu) + y_cur = params.tau*iy_cur + mu_bar*der.*setder; + elseif (function_mu) + y_cur = params.tau*iy_cur + params.mu(i)*der.*setder; + else y_cur = params.tau*iy_cur + params.mu*der.*setder; + end; + + Y_i = ne(y_cur,0); + setYi = zeros(N,1); + setYi(Y_i) = 1; + else % Tau fixed and user-defined + if (adaptive_mu) + y_cur = params.tau*iy_cur + mu_bar*der.*setder; + elseif (function_mu) + y_cur = params.tau*iy_cur + params.mu(i)*der.*setder; + else y_cur = params.tau*iy_cur + params.mu*der.*setder; + end; + + Y_i = ne(y_cur,0); + setYi = zeros(N,1); + setYi(Y_i) = 1; + end; + else + if (adaptive_mu) + y_cur = params.tau(i)*iy_cur + mu_bar*der.*setder; + elseif (function_mu) + y_cur = params.tau(i)*iy_cur + params.mu(i)*der.*setder; + else y_cur = params.tau(i)*iy_cur + params.mu*der.*setder; + end; + + Y_i = ne(y_cur,0); + setYi = zeros(N,1); + setYi(Y_i) = 1; + end; + + % Hard-threshold b and compute X_{i+1} + set_Xi_Yi = setXi + setYi; + ind_Xi_Yi = find(set_Xi_Yi > 0); + z = x_cur(ind_Xi_Yi) + y_cur(ind_Xi_Yi); + [~, ind_z] = sort(abs(z), 'descend'); + x_cur = zeros(N,1); + x_cur(ind_Xi_Yi(ind_z(1:K))) = z(ind_z(1:K)); + X_i = ind_Xi_Yi(ind_z(1:K)); + + setXi = zeros(N,1); + setXi(X_i) = 1; + + if (params.gradientDescentx == 1) + % Calculate gradient of estimated vector x_cur + Phi_x_cur = Phi(:,X_i)*x_cur(X_i); + res = y - Phi_x_cur; + der = Phi_t*res; + + ider = der(X_i); + + if (adaptive_mu) + Pder = Phi(:,X_i)*ider; + mu_bar = ider'*ider/(Pder'*Pder); + x_cur(X_i) = x_cur(X_i) + mu_bar*ider; + elseif (function_mu) + x_cur = x_cur(X_i) + params.mu(i)*ider; + else x_cur = x_cur(X_i) + params.mu*ider; + end; + elseif (params.solveNewtonx == 1) + % Similar to HTP + if (params.useCG == 1) + [v, ~, ~] = cgsolve(cg_A(X_i, X_i), cg_b(X_i), params.cg_tol, params.cg_maxiter, cg_verbose); + else + v = cg_A(X_i,X_i)\cg_b(X_i); + end; + x_cur(X_i) = v; + end; + + % Test stopping criterion + if (i > 1) && (norm(x_cur - x_prev) < params.tol*norm(x_cur)) + break; + end; + i = i + 1; +end; + +x_hat = x_cur; +numiter = i; + +if (i > params.ALPSiters) + x_path = x_path(:,1:numiter-1); +else + x_path = x_path(:,1:numiter); +end;
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/alps/ALPS/l_ALPS.m Fri Aug 12 11:17:47 2011 +0100 @@ -0,0 +1,267 @@ +function [x_hat, numiter, x_path] = l_ALPS(y, Phi, K, params) +% ========================================================================= +% l-ALPS(#) algorithm - Beta Version +% ========================================================================= +% Algebraic Pursuit (ALPS) algorithm with l-memory acceleration. +% +% Detailed discussion on the algorithm can be found in section III in +% [1] "On Accelerated Hard Thresholding Methods for Sparse Approximation", written +% by Volkan Cevher, Technical Report, 2011. +% ========================================================================= +% INPUT ARGUMENTS: +% y M x 1 undersampled measurement vector. +% Phi M x N regression matrix. +% K Sparsity of underlying vector x* or desired +% sparsity of solution. +% params Structure of parameters. These are: +% +% tol,... Early stopping tolerance. Default value: tol = +% 1-e5 +% ALPSiters,... Maximum number of algorithm iterations. Default +% value: 300. +% solveNewtonb,... If solveNewtonb == 1: Corresponds to solving a +% Newton system restricted to a sparse support. +% It is implemented via conjugate gradients. +% If solveNewtonb == 0: Step size selection as described +% in eqs. (12) and (13) in [1]. +% Default value: solveNewtonb = 0. +% gradientDescentx,... If gradientDescentx == 1: single gradient +% update of x_{i+1} restricted ot its support with +% line search. Default value: gradientDescentx = +% 1. +% solveNewtonx,... If solveNewtonx == 1: Akin to Hard Thresholding Pursuit +% (c.f. Simon Foucart, "Hard Thresholding Pursuit," +% preprint, 2010). Default vale: solveNewtonx = 0 +% tau,... Variable that controls the momentum in +% non-memoryless case. Ignored in memoryless +% case. Default value: tau = 1/2. +% Special cases: +% - tau = -1: momentum step size is automatically +% optimized in every step. +% - tau as a function handle: user defined +% behavior of tau momentum term. +% mu,... Variable that controls the step size selection. +% When mu = 0, step size is computed adaptively +% per iteration. Default value: mu = 0. +% cg_maxiter,... Maximum iterations for Conjugate-Gradients method. +% cg_tol Tolerance variable for Conjugate-Gradients method. +% ========================================================================= +% OUTPUT ARGUMENTS: +% x_hat N x 1 recovered K-sparse vector. +% numiter Number of iterations executed. +% x_path Keeps a series of computed N x 1 K-sparse vectors +% until the end of the iterative process. +% ========================================================================= +% 01/04/2011, by Anastasios Kyrillidis. anastasios.kyrillidis@epfl.ch, EPFL. +% ========================================================================= +% cgsolve.m is written by Justin Romberg, Caltech, Oct. 2005. +% Email: jrom@acm.caltech.edu +% ========================================================================= +% This work was supported in part by the European Commission under Grant +% MIRG-268398 and DARPA KeCoM program #11-DARPA-1055. VC also would like +% to acknowledge Rice University for his Faculty Fellowship. +% ========================================================================= + +[M, N] = size(Phi); + +%% Initialize transpose of measurement matrix + +Phi_t = Phi'; + +%% Initialize to zero vector +y_cur = zeros(N,1); +Y_i = []; + +x_path = zeros(N, params.ALPSiters); + +%% CG params +if (params.solveNewtonx == 1 || params.solveNewtonb == 1) + cg_verbose = 0; + cg_A = Phi_t*Phi; + cg_b = Phi_t*y; +end; + +%% Determine momentum step size selection strategy +optimizeTau = 0; +function_tau = 0; + +if (isa(params.tau,'float')) + if (params.tau == -1) + optimizeTau = 1; + end; +elseif (isa(params.tau, 'function_handle')) + function_tau = 1; +end; + +%% Determine step size selection strategy +function_mu = 0; +adaptive_mu = 0; + +if (isa(params.mu,'float')) + function_mu = 0; + if (params.mu == 0) + adaptive_mu = 1; + else + adaptive_mu = 0; + end; +elseif (isa(params.mu,'function_handle')) + function_mu = 1; +end; + +%% Help variables +complementary_Yi = ones(N,1); +x = zeros(N,params.memory + 1); +Phi_x = zeros(M,params.memory + 1); +tau_candidates = zeros(params.memory,1); +y_candidates = zeros(N,params.memory); +residual_energy = zeros(params.memory,1); + +i = 1; +%% l-ALPS(#) +while (i <= params.ALPSiters) + x_path(:,i) = x(:,end); + + for k = 1:params.memory + x(:,k) = x(:,k+1); + Phi_x(:,k) = Phi_x(:,k+1); + end; + + % Compute the residual + if (i == 1) + res = y; + else + Phi_y_cur = Phi(:,Y_i)*y_cur(Y_i); + res = y - Phi_y_cur; + end; + + % Compute the derivative + der = Phi_t*res; + + % Determine S_i via eq. (11) (change of variable from x_i to y_i) + complementary_Yi(Y_i) = 0; + [tmpArg, ind_der] = sort(abs(der).*complementary_Yi, 'descend'); + complementary_Yi(Y_i) = 1; + S_i = [Y_i; ind_der(1:K)]; + + ider = der(S_i); + if (params.solveNewtonb == 1) + % Compute least squares solution of the system A*y = (A*A)x using CG + if (params.useCG == 1) + [b, tmpArg, tmpArg] = cgsolve(cg_A(S_i, S_i), cg_b(S_i), params.cg_tol, params.cg_maxiter, cg_verbose); + else + b = cg_A(S_i,S_i)\cg_b(S_i); + end; + else + % Step size selection via eq. (12) and eq. (13) (change of variable from x_i to y_i) + if (adaptive_mu) + Pder = Phi(:,S_i)*ider; + mu_bar = ider'*ider/(Pder'*Pder); + b = y_cur(S_i) + mu_bar*ider; + elseif (function_mu) + b = y_cur(S_i) + params.mu(i)*ider; + else b = y_cur(S_i) + params.mu*ider; + end; + end; + + % Hard-threshold b and compute X_{i+1} + [tmpArg, ind_b] = sort(abs(b), 'descend'); + x(:,end) = zeros(N,1); + x(S_i(ind_b(1:K)),end) = b(ind_b(1:K)); + X_i = S_i(ind_b(1:K)); + + if (params.gradientDescentx == 1) + % Calculate gradient of estimated current x vector + Phi_x_cur = Phi(:,X_i)*x(X_i,end); + res = y - Phi_x_cur; + der = Phi_t*res; + ider = der(X_i); + + if (adaptive_mu) + Pder = Phi(:,X_i)*ider; + mu_bar = ider'*ider/(Pder'*Pder); + x(X_i,end) = x(X_i,end) + mu_bar*ider; + elseif (function_mu) + x(X_i,end) = x(X_i,end) + params.mu(i)*ider; + else x(X_i,end) = x(X_i,end) + params.mu*ider; + end; + elseif (params.solveNewtonx == 1) + % Similar to HTP + if (params.useCG == 1) + [v, tmpArg, tmpArg] = cgsolve(cg_A(X_i, X_i), cg_b(X_i), params.cg_tol, params.cg_maxiter, cg_verbose); + else + v = cg_A(X_i, X_i)\cg_b(X_i); + end; + x(X_i,end) = v; + end; + + Phi_x(:,end) = Phi(:,X_i)*x(X_i,end); + res = y - Phi_x(:,end); + if (~function_tau) % If tau is not a function handle... + if (optimizeTau) % Compute optimized tau + if (i > params.memory) + + % tau = argmin ||u - Phi*y_{i+1}|| + % = <res, Phi*(x_cur - x_prev)>/||Phi*(x_cur - x_prev)||^2 + + for k = 1:params.memory + Phi_diff = Phi_x(:,end) - Phi_x(:,k); + tau_candidates(k) = res'*Phi_diff/(Phi_diff'*Phi_diff); + y_candidates(:,k) = x(:,end) + tau_candidates(k)*(x(:,end) - x(:,k)); + residual_energy(k) = norm(y - Phi*y_candidates(:,k)); + end; + + [tmpArg,min_ind] = min(residual_energy); + y_cur = y_candidates(:,min_ind); + Y_i = find(ne(y_cur,0)); + else + Phi_diff = Phi_x(:,end) - Phi_x(:,end-1); + params.tau = res'*Phi_diff/(Phi_diff'*Phi_diff); + y_cur = x(:,end) + params.tau*(x(:,end) - x(:,end-1)); + Y_i = find(ne(y_cur,0)); + end; + else + if (i > params.memory) + for k = 1:params.memory + y_candidates(:,k) = x(:,end) + params.tau*(x(:,end) - x(:,k)); + residual_energy(k) = norm(y - Phi*y_candidates(:,k)); + end; + + [tmpArg,min_ind] = min(residual_energy); + y_cur = y_candidates(:,min_ind); + Y_i = find(ne(y_cur,0)); + else + y_cur = x(:,end) + params.tau*(x(:,end) - x(:,end-1)); + Y_i = find(ne(y_cur,0)); + end; + end; + else + if (i > params.memory) + for k = 1:params.memory + y_candidates(:,k) = x(:,end) + params.tau(i)*(x(:,end) - x(:,k)); + residual_energy(k) = norm(y - Phi*y_candidates(:,k))^2; + end; + + [tmpArg,min_ind] = min(residual_energy); + y_cur = y_candidates(:,min_ind); + Y_i = find(ne(y_cur,0)); + else + y_cur = x(:,end) + params.tau(i)*(x(:,end) - x(:,end-1)); + Y_i = find(ne(y_cur,0)); + end; + end; + + % Test stopping criterion + if (i > 1) && (norm(x(:,end) - x(:,end-1)) < params.tol*norm(x(:,end))) + break; + end; + i = i + 1; +end; + +x_hat = x(:,end); +numiter = i; + +if (i > params.ALPSiters) + x_path = x_path(:,1:numiter-1); +else + x_path = x_path(:,1:numiter); +end;
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/alps/ALPS/one_ALPS.m Fri Aug 12 11:17:47 2011 +0100 @@ -0,0 +1,252 @@ +function [x_hat, numiter, x_path] = one_ALPS(y, Phi, K, params) +% ========================================================================= +% 1-ALPS(#) algorithm - Beta Version +% ========================================================================= +% Algebraic Pursuit (ALPS) algorithm with 1-memory acceleration. +% +% Detailed discussion on the algorithm can be found in +% [1] "On Accelerated Hard Thresholding Methods for Sparse Approximation", written +% by Volkan Cevher, Technical Report, 2011. +% ========================================================================= +% INPUT ARGUMENTS: +% y M x 1 undersampled measurement vector. +% Phi M x N regression matrix. +% K Sparsity of underlying vector x* or desired +% sparsity of solution. +% params Structure of parameters. These are: +% +% tol,... Early stopping tolerance. Default value: tol = +% 1-e5. +% ALPSiters,... Maximum number of algorithm iterations. Default +% value: 300. +% solveNewtonb,... If solveNewtonb == 1: Corresponds to solving a +% Newton system restricted to a sparse support. +% It is implemented via conjugate gradients. +% If solveNewtonb == 0: Step size selection as described +% in eqs. (12) and (13) in [1]. +% Default value: solveNewtonb = 0. +% gradientDescentx,... If gradientDescentx == 1: single gradient +% update of x_{i+1} restricted ot its support with +% line search. Default value: gradientDescentx = +% 1. +% solveNewtonx,... If solveNewtonx == 1: Akin to Hard Thresholding Pursuit +% (c.f. Simon Foucart, "Hard Thresholding Pursuit," +% preprint, 2010). Default vale: solveNewtonx = 0. +% tau,... Variable that controls the momentum in +% non-memoryless case. Ignored in memoryless +% case. Default value: tau = 1/2. +% Special cases: +% - tau = 0: momentum step size selection is +% driven by the following formulas: +% a_1 = 1; +% a_{i+1} = (1+\sqrt(1+4a_i^2)/2; +% tau = (a_i - 1)/(a_{i+1}); +% described in [2] "A fast iterative +% shrinkage-thresholding algorithm for linear +% inverse problems", Beck A., and Teboulle M. +% - tau = -1: momentum step size is automatically +% optimized in every step. +% - tau as a function handle: user defined +% behavior of tau momentum term. +% mu,... Variable that controls the step size selection. +% When mu = 0, step size is computed adaptively +% per iteration. Default value: mu = 0. +% cg_maxiter,... Maximum iterations for Conjugate-Gradients method. +% cg_tol Tolerance variable for Conjugate-Gradients method. +% ========================================================================= +% OUTPUT ARGUMENTS: +% x_hat N x 1 recovered K-sparse vector. +% numiter Number of iterations executed. +% x_path Keeps a series of computed N x 1 K-sparse vectors +% until the end of the iterative process. +% ========================================================================= +% 01/04/2011, by Anastasios Kyrillidis. anastasios.kyrillidis@epfl.ch, EPFL. +% ========================================================================= +% cgsolve.m is written by Justin Romberg, Caltech, Oct. 2005. +% Email: jrom@acm.caltech.edu +% ========================================================================= +% This work was supported in part by the European Commission under Grant +% MIRG-268398 and DARPA KeCoM program #11-DARPA-1055. VC also would like +% to acknowledge Rice University for his Faculty Fellowship. +% ========================================================================= + +[M,N] = size(Phi); + +%% Initialize transpose of measurement matrix + +Phi_t = Phi'; + +%% Initialize to zero vector +x_cur = zeros(N,1); +y_cur = zeros(N,1); +Phi_x_cur = zeros(M,1); +Y_i = []; + +x_path = zeros(N, params.ALPSiters); + +%% CG params +if (params.solveNewtonx == 1 || params.solveNewtonb == 1) + cg_verbose = 0; + cg_A = Phi_t*Phi; + cg_b = Phi_t*y; +end; + +%% Determine momentum step size selection strategy +fista = 0; +optimizeTau = 0; +a_prev = 1; +function_tau = 0; + +if (isa(params.tau,'float')) + function_tau = 0; + if (params.tau == 0) + fista = 1; + optimizeTau = 0; + elseif (params.tau == -1) + optimizeTau = 1; + fista = 0; + end; +elseif (isa(params.tau, 'function_handle')) + function_tau = 1; +end; + +%% Determine step size selection strategy +function_mu = 0; +adaptive_mu = 0; + +if (isa(params.mu,'float')) + function_mu = 0; + if (params.mu == 0) + adaptive_mu = 1; + else + adaptive_mu = 0; + end; +elseif (isa(params.mu,'function_handle')) + function_mu = 1; +end; + +%% Help variables +complementary_Yi = ones(N,1); + +i = 1; +%% 1-ALPS(#) +while (i <= params.ALPSiters) + x_path(:,i) = x_cur; + x_prev = x_cur; + + % Compute the residual + if (i == 1) + res = y; + % Compute the derivative + der = Phi_t*res; + else + % Compute the derivative + if (optimizeTau) + res = y - Phi_x_cur - params.tau*Phi_diff; + else + res = y - Phi(:,Y_i)*y_cur(Y_i); + end; + der = Phi_t*res; + end; + + Phi_x_prev = Phi_x_cur; + + % Determine S_i set via eq. (11) (change of variable from x_i to y_i) + complementary_Yi(Y_i) = 0; + [tmpArg, ind_der] = sort(abs(der).*complementary_Yi, 'descend'); + complementary_Yi(Y_i) = 1; + S_i = [Y_i; ind_der(1:K)]; + + ider = der(S_i); + if (params.solveNewtonb == 1) + % Compute least squares solution of the system A*y = (A*A)x using CG + if (params.useCG == 1) + [b, tmpArg, tmpArg] = cgsolve(cg_A(S_i, S_i), cg_b(S_i), params.cg_tol, params.cg_maxiter, cg_verbose); + else + b = cg_A(S_i,S_i)\cg_b(S_i); + end; + else + % Step size selection via eq. (12) and eq. (13) (change of variable from x_i to y_i) + if (adaptive_mu) + Pder = Phi(:,S_i)*ider; + mu_bar = ider'*ider/(Pder'*Pder); + b = y_cur(S_i) + (mu_bar)*ider; + elseif (function_mu) + b = y_cur(S_i) + params.mu(i)*ider; + else b = y_cur(S_i) + params.mu*ider; + end; + end; + + % Hard-threshold b and compute X_{i+1} + [tmpArg, ind_b] = sort(abs(b), 'descend'); + x_cur = zeros(N,1); + x_cur(S_i(ind_b(1:K))) = b(ind_b(1:K)); + X_i = S_i(ind_b(1:K)); + + if (params.gradientDescentx == 1) + % Calculate gradient of estimated vector x_cur + Phi_x_cur = Phi(:,X_i)*x_cur(X_i); + res = y - Phi_x_cur; + der = Phi_t*res; + ider = der(X_i); + + if (adaptive_mu) + Pder = Phi(:,X_i)*ider; + mu_bar = ider'*ider/(Pder'*Pder); + x_cur(X_i) = x_cur(X_i) + mu_bar*ider; + elseif (function_mu) + x_cur(X_i) = x_cur(X_i) + params.mu(i)*ider; + else x_cur(X_i) = x_cur(X_i) + params.mu*ider; + end; + elseif (params.solveNewtonx == 1) + % Similar to HTP + if (params.useCG == 1) + [v, tmpArg, tmpArg] = cgsolve(cg_A(X_i, X_i), cg_b(X_i), params.cg_tol, params.cg_maxiter, cg_verbose); + else + v = cg_A(X_i, X_i)\cg_b(X_i); + end; + x_cur(X_i) = v; + end; + + if (~function_tau) % If tau is not a function handle... + if (fista) % Fista configuration + a_cur = (1 + sqrt(1 + 4*a_prev^2))/2; + params.tau = (a_prev - 1)/a_cur; + a_prev = a_cur; + elseif (optimizeTau) % Compute optimized tau + + % tau = argmin ||u - Phi*y_{i+1}|| + % = <res, Phi*(x_cur - x_prev)>/||Phi*(x_cur - x_prev)||^2 + + Phi_x_cur = Phi(:,X_i)*x_cur(X_i); + res = y - Phi_x_cur; + if (i == 1) + Phi_diff = Phi_x_cur; + else + Phi_diff = Phi_x_cur - Phi_x_prev; + end; + params.tau = res'*Phi_diff/(Phi_diff'*Phi_diff); + end; + + y_cur = x_cur + params.tau*(x_cur - x_prev); + Y_i = find(ne(y_cur, 0)); + else + y_cur = x_cur + params.tau(i)*(x_cur - x_prev); + Y_i = find(ne(y_cur, 0)); + end; + + % Test stopping criterion + if (i > 1) && (norm(x_cur - x_prev) < params.tol*norm(x_cur)) + break; + end; + i = i + 1; +end; + +x_hat = x_cur; +numiter= i; + +if (i > params.ALPSiters) + x_path = x_path(:,1:numiter-1); +else + x_path = x_path(:,1:numiter); +end;
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/alps/ALPS/thresh.m Fri Aug 12 11:17:47 2011 +0100 @@ -0,0 +1,4 @@ +function x= thresh(x, K) + +[~, ind] = sort(abs(x), 'descend'); +x(ind(K+1:end))= 0; \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/alps/ALPS/zero_ALPS.m Fri Aug 12 11:17:47 2011 +0100 @@ -0,0 +1,189 @@ +function [x_hat, numiter, x_path] = zero_ALPS(y, Phi, K, params) +% ========================================================================= +% 0-ALPS(#) algorithm - Beta Version +% ========================================================================= +% Algebraic Pursuit (ALPS) algorithm with memoryless acceleration. +% +% Detailed discussion on the algorithm can be found in +% [1] "On Accelerated Hard Thresholding Methods for Sparse Approximation", written +% by Volkan Cevher, Technical Report, 2011. +% ========================================================================= +% INPUT ARGUMENTS: +% y M x 1 undersampled measurement vector. +% Phi M x N regression matrix. +% K Sparsity of underlying vector x* or desired +% sparsity of solution. +% params Structure of parameters. These are: +% +% tol,... Early stopping tolerance. Default value: tol = +% 1-e5 +% ALPSiters,... Maximum number of algorithm iterations. Default +% value: 300. +% mode, ... According to [1], possible values are +% [0,1,2,4,5,6]. This value comes from the binary +% representation of the parameters: +% (solveNewtob, gradientDescentx, solveNewtonx), +% which are explained next. Default value = 0. +% solveNewtonb,... If solveNewtonb == 1: Corresponds to solving a +% Newton system restricted to a sparse support. +% It is implemented via conjugate gradients. +% If solveNewtonb == 0: Step size selection as described +% in eqs. (12) and (13) in [1]. +% Default value: solveNewtonb = 0. +% gradientDescentx,... If gradientDescentx == 1: single gradient +% update of x_{i+1} restricted ot its support with +% line search. Default value: gradientDescentx = +% 1. +% solveNewtonx,... If solveNewtonx == 1: Akin to Hard Thresholding Pursuit +% (c.f. Simon Foucart, "Hard Thresholding Pursuit," +% preprint, 2010). Default vale: solveNewtonx = 0 +% mu,... Variable that controls the step size selection. +% When mu = 0, step size is computed adaptively +% per iteration. Default value: mu = 0. +% cg_maxiter,... Maximum iterations for Conjugate-Gradients method. +% cg_tol Tolerance variable for Conjugate-Gradients method. +% ========================================================================= +% OUTPUT ARGUMENTS: +% x_hat N x 1 recovered K-sparse vector. +% numiter Number of iterations executed. +% x_path Keeps a series of computed N x 1 K-sparse vectors +% until the end of the iterative process. +% ========================================================================= +% 01/04/2011, by Anastasios Kyrillidis. anastasios.kyrillidis@epfl.ch, EPFL. +% ========================================================================= +% cgsolve.m is written by Justin Romberg, Caltech, Oct. 2005. +% Email: jrom@acm.caltech.edu +% ========================================================================= +% This work was supported in part by the European Commission under Grant +% MIRG-268398 and DARPA KeCoM program #11-DARPA-1055. VC also would like +% to acknowledge Rice University for his Faculty Fellowship. +% ========================================================================= + +[tmpArg, N] = size(Phi); + +%% Initialize transpose of measurement matrix + +Phi_t = Phi'; + +%% Initialize to zero vector +x_cur = zeros(N,1); +X_i = []; + +x_path = zeros(N, params.ALPSiters); + +%% CG params +if (params.mode == 1 || params.mode == 4 || params.mode == 5 || params.mode == 6) + cg_verbose = 0; + cg_A = Phi_t*Phi; + cg_b = Phi_t*y; +end; + +%% Determine step size selection strategy +function_mu = 0; +adaptive_mu = 0; + +if (isa(params.mu,'float')) + function_mu = 0; + if (params.mu == 0) + adaptive_mu = 1; + else + adaptive_mu = 0; + end; +elseif (isa(params.mu,'function_handle')) + function_mu = 1; +end; + +%% Help variables +complementary_Xi = ones(N,1); + +i = 1; +%% 0-ALPS(#) +while (i <= params.ALPSiters) + x_path(:,i) = x_cur; + x_prev = x_cur; + + % Compute the residual + if (i == 1) + res = y; + else + Phi_x_cur = Phi(:,X_i)*x_cur(X_i); + res = y - Phi_x_cur; + end; + + % Compute the derivative + der = Phi_t*res; + + % Determine S_i set via eq. (11) + complementary_Xi(X_i) = 0; + [tmpArg, ind_der] = sort(abs(der).*complementary_Xi, 'descend'); + complementary_Xi(X_i) = 1; + S_i = [X_i; ind_der(1:K)]; + + ider = der(S_i); + if (params.solveNewtonb == 1) + % Compute least squares solution of the system A*y = (A*A)x using CG + if (params.useCG == 1) + [b, tmpArg, tmpArg] = cgsolve(cg_A(S_i, S_i), cg_b(S_i), params.cg_tol, params.cg_maxiter, cg_verbose); + else + b = cg_A(S_i,S_i)\cg_b(S_i); + end; + else + % Step size selection via eq. (12) and eq. (13) + if (adaptive_mu) + Pder = Phi(:,S_i)*ider; + mu_bar = ider'*ider/(Pder'*Pder); + b = x_cur(S_i) + (mu_bar)*ider; + elseif (function_mu) + b = x_cur(S_i) + params.mu(i)*ider; + else + b = x_cur(S_i) + params.mu*ider; + end; + end; + + % Hard-threshold b and compute X_{i+1} + [tmpArg, ind_b] = sort(abs(b), 'descend'); + x_cur = zeros(N,1); + x_cur(S_i(ind_b(1:K))) = b(ind_b(1:K)); + X_i = S_i(ind_b(1:K)); + + if (params.gradientDescentx == 1) + % Calculate gradient of estimated vector x_cur + Phi_x_cur = Phi(:,X_i)*x_cur(X_i); + res = y - Phi_x_cur; + der = Phi_t*res; + ider = der(X_i); + + if (adaptive_mu) + Pder = Phi(:,X_i)*ider; + mu_bar = ider'*ider/(Pder'*Pder); + x_cur(X_i) = x_cur(X_i) + mu_bar*ider; + elseif (function_mu) + x_cur(X_i) = x_cur(X_i) + params.mu(i)*ider; + else x_cur(X_i) = x_cur(X_i) + params.mu*ider; + end; + elseif (params.solveNewtonx == 1) + % Similar to HTP + if (params.useCG == 1) + [v, tmpArg, tmpArg] = cgsolve(cg_A(X_i, X_i), cg_b(X_i), params.cg_tol, params.cg_maxiter, cg_verbose); + else + v = cg_A(X_i,X_i)\cg_b(X_i); + end; + x_cur(X_i) = v; + end; + + % Test stopping criterion + if (i > 1) && (norm(x_cur - x_prev) < params.tol*norm(x_cur)) + break; + end; + i = i + 1; + +end; + +x_hat = x_cur; +numiter = i; + +if (i > params.ALPSiters) + x_path = x_path(:,1:numiter-1); +else + x_path = x_path(:,1:numiter); +end;
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/alps/ALPSbenchmark_errornorm_vs_iter.m Fri Aug 12 11:17:47 2011 +0100 @@ -0,0 +1,228 @@ +% ========================================================================= +% Algebraic Pursuit algorithms - Demo +% ========================================================================= +% Algebraic Pursuit (ALPS) algorithms are accelerated hard thresholding methods +% on sparse recovery of linear inverse systems. In particular, let +% Phi : M x N real matrix (M < N) +% x* : N x 1 K-sparse data vector +% n : N x 1 additive noise vector +% then, y = Phi x* + n is the undersampled M x 1 measurement vector. ALPS +% solve the following minimization problem +% minimize ||y - Phi x||^2 subject to x is K-sparse vector. +% +% Detailed discussion on the algorithm can be found in +% [1] "On Accelerated Hard Thresholding Methods for Sparse Approximation", written +% by Volkan Cevher, Technical Report, 2011. +% ========================================================================= +% 01/04/2011, by Anastasios Kyrillidis. anastasios.kyrillidis@epfl.ch, EPFL. +% ========================================================================= + +clear all +close all +clc; + +addpath ALPS/; + +% General parameters +N = 4000; % Size of sparse vector x +M = 800; % Number of measurements +K = ceil(M*(0.2)); % Sparsity of x* +sigma = 0.0000; % Additive noise variance +verbose = 1; % Print information + +% ALPS parameters +its = 600; % Maximum number of iterations +Ttol= 1e-6; % Convergence tolerance +tau = -1; % Momentum term +mu = 0; % Step size selection +MC = 10; % Number of Monte-Carlo iterations +useCG = 0; % Conjugate Gradient + +% Please refer to generate_matrix.m and generate_vector.m files +m_ensemble = 'Gaussian'; % Measurement matrix ensemble type +x_ensemble = 'Gaussian'; % Sparse vector ensemble type + +max_its = 0; + +for i = 1:MC + x = generate_vector(N, K, x_ensemble); + Phi = generate_matrix(M, N, m_ensemble); + noise = sigma*randn(M,1); + y = Phi*x + noise; + + % 0-ALPS(0) + disp('====================================================================='); + [x_hat, numiter, time, x_path] = AlgebraicPursuit(y, Phi, K, 'memory', 0, 'mode', 0, 'tolerance', Ttol, 'ALPSiterations', its, 'verbose', verbose, 'tau', tau, 'useCG', useCG, 'mu', mu); + str = sprintf('Error norm: %f ', norm(x-x_hat)); + disp(str); + num_iter(1, i) = numiter; + error(1,i,1:size(x_path,2))=sqrt(sum(abs(x*ones(1,size(x_path,2))-x_path).^2)); + total_time(1, i) = time; + + if (numiter > max_its) + max_its = numiter; + end; + + % 0-ALPS(2) + disp('====================================================================='); + [x_hat, numiter, time, x_path] = AlgebraicPursuit(y, Phi, K, 'memory', 0, 'mode', 2, 'tolerance', Ttol, 'ALPSiterations', its, 'verbose', verbose, 'tau', tau, 'useCG', useCG, 'mu', mu); + str = sprintf('Error norm: %f ', norm(x-x_hat)); + disp(str); + num_iter(2, i) = numiter; + error(2,i,1:size(x_path,2))=sqrt(sum(abs(x*ones(1,size(x_path,2))-x_path).^2)); + total_time(2, i) = time; + + if (numiter > max_its) + max_its = numiter; + end; + + % 0-ALPS(4) + disp('====================================================================='); + [x_hat, numiter, time, x_path] = AlgebraicPursuit(y, Phi, K, 'memory', 0, 'mode', 4, 'tolerance', Ttol, 'ALPSiterations', its, 'verbose', verbose, 'tau', tau, 'useCG', useCG, 'mu', mu); + str = sprintf('Error norm: %f ', norm(x-x_hat)); + disp(str); + num_iter(3, i) = numiter; + error(3,i,1:size(x_path,2))=sqrt(sum(abs(x*ones(1,size(x_path,2))-x_path).^2)); + total_time(3, i) = time; + + if (numiter > max_its) + max_its = numiter; + end; + + % 0-ALPS(5) + disp('====================================================================='); + [x_hat, numiter, time, x_path] = AlgebraicPursuit(y, Phi, K, 'memory', 0, 'mode', 5, 'tolerance', Ttol, 'ALPSiterations', its, 'verbose', verbose, 'tau', tau, 'useCG', useCG, 'mu', mu); + str = sprintf('Error norm: %f ', norm(x-x_hat)); + disp(str); + num_iter(4, i) = numiter; + error(4,i,1:size(x_path,2))=sqrt(sum(abs(x*ones(1,size(x_path,2))-x_path).^2)); + total_time(4, i) = time; + + if (numiter > max_its) + max_its = numiter; + end; + + % 1-ALPS(2) + disp('====================================================================='); + [x_hat, numiter, time, x_path] = AlgebraicPursuit(y, Phi, K, 'memory', 1, 'mode', 2, 'tolerance', Ttol, 'ALPSiterations', its, 'verbose', verbose, 'tau', tau, 'useCG', useCG, 'mu', mu); + str = sprintf('Error norm: %f ', norm(x-x_hat)); + disp(str); + num_iter(5, i) = numiter; + error(5,i,1:size(x_path,2))=sqrt(sum(abs(x*ones(1,size(x_path,2))-x_path).^2)); + total_time(5, i) = time; + + if (numiter > max_its) + max_its = numiter; + end; + + % 1-ALPS(4) + disp('====================================================================='); + [x_hat, numiter, time, x_path] = AlgebraicPursuit(y, Phi, K, 'memory', 1, 'mode', 4, 'tolerance', Ttol, 'ALPSiterations', its, 'verbose', verbose, 'tau', tau, 'useCG', useCG, 'mu', mu); + str = sprintf('Error norm: %f ', norm(x-x_hat)); + disp(str); + num_iter(6, i) = numiter; + error(6,i,1:size(x_path,2))=sqrt(sum(abs(x*ones(1,size(x_path,2))-x_path).^2)); + total_time(6, i) = time; + + if (numiter > max_its) + max_its = numiter; + end; + + % 1-ALPS(5) + disp('====================================================================='); + [x_hat, numiter, time, x_path] = AlgebraicPursuit(y, Phi, K, 'memory', 1, 'mode', 5, 'tolerance', Ttol, 'ALPSiterations', its, 'verbose', verbose, 'tau', tau, 'useCG', useCG, 'mu', mu); + str = sprintf('Error norm: %f ', norm(x-x_hat)); + disp(str); + num_iter(7, i) = numiter; + error(7,i,1:size(x_path,2))=sqrt(sum(abs(x*ones(1,size(x_path,2))-x_path).^2)); + total_time(7,i) = time; + + if (numiter > max_its) + max_its = numiter; + end; + + % 2-ALPS(2) + disp('====================================================================='); + [x_hat, numiter, time, x_path] = AlgebraicPursuit(y, Phi, K, 'memory', 2, 'mode', 2, 'tolerance', Ttol, 'ALPSiterations', its, 'verbose', verbose, 'tau', tau, 'useCG', useCG, 'mu', mu); + str = sprintf('Error norm: %f ', norm(x-x_hat)); + disp(str); + num_iter(8, i) = numiter; + error(8,i,1:size(x_path,2))=sqrt(sum(abs(x*ones(1,size(x_path,2))-x_path).^2)); + total_time(8, i) = time; + + if (numiter > max_its) + max_its = numiter; + end; + + % 2-ALPS(4) + disp('====================================================================='); + [x_hat, numiter, time, x_path] = AlgebraicPursuit(y, Phi, K, 'memory', 2, 'mode', 4, 'tolerance', Ttol, 'ALPSiterations', its, 'verbose', verbose, 'tau', tau, 'useCG', useCG, 'mu', mu); + str = sprintf('Error norm: %f ', norm(x-x_hat)); + disp(str); + num_iter(9, i) = numiter; + error(9,i,1:size(x_path,2))=sqrt(sum(abs(x*ones(1,size(x_path,2))-x_path).^2)); + total_time(9, i) = time; + + if (numiter > max_its) + max_its = numiter; + end; + + % 2-ALPS(5) + disp('====================================================================='); + [x_hat, numiter, time, x_path] = AlgebraicPursuit(y, Phi, K, 'memory', 2, 'mode', 5, 'tolerance', Ttol, 'ALPSiterations', its, 'verbose', verbose, 'tau', tau, 'useCG', useCG, 'mu', mu); + str = sprintf('Error norm: %f ', norm(x-x_hat)); + disp(str); + num_iter(10, i) = numiter; + error(10,i,1:size(x_path,2))=sqrt(sum(abs(x*ones(1,size(x_path,2))-x_path).^2)); + total_time(10, i) = time; + + if (numiter > max_its) + max_its = numiter; + end; + + % 3-ALPS(2) + disp('====================================================================='); + [x_hat, numiter, time, x_path] = AlgebraicPursuit(y, Phi, K, 'memory', 3, 'mode', 2, 'tolerance', Ttol, 'ALPSiterations', its, 'verbose', verbose, 'tau', tau, 'useCG', useCG, 'mu', mu); + str = sprintf('Error norm: %f ', norm(x-x_hat)); + disp(str); + num_iter(11, i) = numiter; + error(11,i,1:size(x_path,2))=sqrt(sum(abs(x*ones(1,size(x_path,2))-x_path).^2)); + total_time(11, i) = time; + + if (numiter > max_its) + max_its = numiter; + end; +end; + +set(0,'DefaultAxesFontSize',12); + +figure; +semilogy(squeeze(median(error(1,:,:),2)),'LineWidth',3); hold on +semilogy(squeeze(median(error(2,:,:),2)),'--','LineWidth',3); +semilogy(squeeze(median(error(3,:,:),2)),':','LineWidth',3); +semilogy(squeeze(median(error(4,:,:),2)),'k','LineWidth',4); +semilogy(squeeze(median(error(5,:,:),2)),'k--','LineWidth',4); +semilogy(squeeze(median(error(6,:,:),2)),'k:','LineWidth',4); +semilogy(squeeze(median(error(7,:,:),2)),'k-.','LineWidth',4); +semilogy(squeeze(median(error(8,:,:),2)),'r--','LineWidth',3); +semilogy(squeeze(median(error(9,:,:),2)),'m--','LineWidth',3); +semilogy(squeeze(median(error(10,:,:),2)),'k--','LineWidth',3); +semilogy(squeeze(median(error(11,:,:),2)),'g--','LineWidth',3); + +xlabel('[i]:iteration number') +ylabel('||x-x_i||') +axis([1 max_its + 10 10^-5 2*10^0]) + +legend(strcat('0-IHT(0) [', num2str(mean(num_iter(1,:))),'][', num2str(mean(total_time(1,:))),']'), ... +strcat('0-IHT(2) [', num2str(mean(num_iter(2,:))),'][', num2str(mean(total_time(2,:))),']'), ... +strcat('0-IHT(4) [', num2str(mean(num_iter(3,:))),'][', num2str(mean(total_time(3,:))),']'), ... +strcat('0-IHT(5) [', num2str(mean(num_iter(4,:))),'][', num2str(mean(total_time(4,:))),']'), ... +strcat('1-IHT(2) [', num2str(mean(num_iter(5,:))),'][', num2str(mean(total_time(5,:))),']'), ... +strcat('1-IHT(4) [', num2str(mean(num_iter(6,:))),'][', num2str(mean(total_time(6,:))),']'), ... +strcat('1-IHT(5) [', num2str(mean(num_iter(7,:))),'][', num2str(mean(total_time(7,:))),']'), ... +strcat('2-ALPS(2) [', num2str(mean(num_iter(8,:))),'][', num2str(mean(total_time(8,:))),']'), ... +strcat('2-ALPS(4) [', num2str(mean(num_iter(9,:))),'][', num2str(mean(total_time(9,:))),']'), ... +strcat('2-ALPS(5) [', num2str(mean(num_iter(10,:))),'][', num2str(mean(total_time(10,:))),']'), ... +strcat('3-ALPS(2) [', num2str(mean(num_iter(11,:))),'][', num2str(mean(total_time(11,:))),']')); +title( strcat('N= ', num2str(N), ', M= ', num2str(M), ', K= ', num2str(K)) ); +shg;
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/alps/ALPSdemo.m Fri Aug 12 11:17:47 2011 +0100 @@ -0,0 +1,79 @@ +% ========================================================================= +% Algebraic Pursuit algorithms - Demo +% ========================================================================= +% Algebraic Pursuit (ALPS) algorithms are accelerated hard thresholding methods +% on sparse recovery of linear inverse systems. In particular, let +% Phi : M x N real matrix (M < N) +% x* : N x 1 K-sparse data vector +% n : N x 1 additive noise vector +% then, y = Phi x* + n is the undersampled M x 1 measurement vector. ALPS +% solve the following minimization problem +% minimize ||y - Phi x||^2 subject to x is K-sparse vector. +% +% Detailed discussion on the algorithm can be found in +% [1] "On Accelerated Hard Thresholding Methods for Sparse Approximation", written +% by Volkan Cevher, Technical Report, 2011. +% ========================================================================= +% 01/04/2011, by Anastasios Kyrillidis. anastasios.kyrillidis@epfl.ch, EPFL. +% ========================================================================= + +clear all +close all +clc + +addpath ALPS/; + +% General parameters +N = 1000; % Size of sparse vector x +M = 300; % Number of measurements +K = ceil(M*(0.25)); % Sparsity of x* +sigma = 0.000; % Additive noise variance +verbose = 1; % Print information + +% ALPS parameters +its = 600; % Maximum number of iterations +Ttol= 1e-6; % Convergence tolerance +mode = 1; % Binary representation of (SolveNewtonb, GradientDescentx, SolveNewtox) +memory = 1; % Memory of IHT method +tau = 0; % Momentum term +useCG = 0; % Usage of Conjugate gradients method +mu = 0; % Step size selection + +% Please refer to generate_matrix.m and generate_vector.m files +m_ensemble = 'Gaussian'; % Measurement matrix ensemble type +x_ensemble = 'Gaussian'; % Sparse vector ensemble type + +% reset(RandStream.getDefaultStream); + +%% Generate data +x = generate_vector(N, K, x_ensemble); +Phi = generate_matrix(M, N, m_ensemble); +noise = sigma*randn(M,1); +y = Phi*x + noise; + +%% ALPS reconstruction +disp('====================================================================='); +[x_hat, numiter, time, x_path] = AlgebraicPursuit(y, Phi, K, 'memory', memory, 'mode', mode, 'tolerance', Ttol, 'ALPSiterations', its, 'verbose', verbose, 'tau', tau, 'useCG', useCG, 'mu', mu); +if (numiter ~= -1) + str = sprintf('Error norm: %f ', norm(x-x_hat)); + disp(str); +end; + +%% Plot error per iteration +if (numiter ~= -1) + error = sqrt(sum(abs(x*ones(1,size(x_path,2))-x_path).^2)); + + set(0, 'DefaultAxesFontSize', 14); + figure; + semilogy(error,'LineWidth',3); hold on; + grid on; + semilogy((norm(noise))*ones(1,its),'m-','LineWidth',1); + + xlabel('[i]:iteration number') + ylabel('||x-x_i||') + axis([1 numiter + 5 10^-5 2*10^0]) + + legend(strcat('Time = [',num2str(time),']'), 'Noise Level'); + title(strcat('N = ', num2str(N), ', M = ', num2str(M), ', K = ', num2str(K))); + shg; +end; \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/alps/README Fri Aug 12 11:17:47 2011 +0100 @@ -0,0 +1,19 @@ +This archive includes: + +1. ALPS folder +2. generate_matrix.m: generates measurement matrix. +3. generate_vector.m: generates sparse vector. +4. Report_bibtex.tex: bibtex reference for citing. +5. ALPSdemo.m: demo of ALPS. +6. ALPSbenchmark_errornorm_vs_iter.m: generates figure of average error norm per iteration vs. # of iterations. + +ALPS folder includes: + +1. AlgebraicPursuit.m: "Wrapper" code. +2. zero_ALPS.m: Implementation of 0-memory acceleration. +3. one_ALPS.m: Implementation of 1-memory acceleration. +4. l_ALPS.m: Implementation of l-memory acceleration. +5. infty_ALPS.m: Implementation of infty-memory acceleration. +6. cgsolve.m: CG algorithm created by Justin Romberg, Caltech. + +Please run ALPSdemo in MATLAB command line to verify installation before use.
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/alps/Report_bibtex.bib Fri Aug 12 11:17:47 2011 +0100 @@ -0,0 +1,27 @@ +@comment{ generated by <http://infoscience.epfl.ch/> } + +@TechReport{EPFL-REPORT-162761, + abstract = {We propose and analyze acceleration schemes for hard + thresholding methods with applications to sparse + approximation in linear inverse systems. Our acceleration + schemes fuse combinatorial, sparse projection algorithms + with convex optimization algebra to provide + computationally efficient and robust sparse recovery + methods. We compare and contrast the (dis)advantages of + the proposed schemes with the state-of-the-art, not only + within hard thresholding methods, but also within convex + sparse recovery algorithms.}, + affiliation = {EPFL}, + author = {Cevher, Volkan}, + details = {http://infoscience.epfl.ch/record/162761}, + documenturl = {http://infoscience.epfl.ch/record/162761/files/techreport.pdf}, + keywords = {structured sparsity; sparse recovery; hard thresholding}, + oai-id = {oai:infoscience.epfl.ch:162761}, + oai-set = {report; fulltext; fulltext-public}, + status = {PUBLISHED}, + submitter = {199128; 199128}, + title = {On {A}ccelerated {H}ard {T}hresholding {M}ethods for + {S}parse {A}pproximation}, + unit = {LIONS}, + year = 2011 +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/alps/generate_matrix.m Fri Aug 12 11:17:47 2011 +0100 @@ -0,0 +1,59 @@ +function [A] = generate_matrix(M, N, ensemble, p) +% ========================================================================= +% Measerement matrix generator +% ========================================================================= +% INPUT ARGUMENTS: +% M Number of measurements (number of rows). +% N Size of sparse vector (number of columns). +% ensemble Ensemble type of measurement matrix. Possible +% values are: +% -'Gaussian': creates a MxN measurement matrix with +% elements drawn from normal distribution N(0,1).% +% -'Bernoulli': creates a MxN measurement matrix with +% elements drawn from Bernoulli distribution (1/2,1/2). +% -'pBernoulli': creates a MxN measurement matrix with +% elements drawn from Bernoulli distribution (p,1-p). +% Parameter of Bernoulli distribution. +% -'sparseGaussian': creates a MxN sparse measurement +% matrix with elements drawn from normal distribution N(0,1). +% ========================================================================= +% OUTPUT ARGUMENTS: +% A MxN measurement matrix with normalized columns. +% ========================================================================= +% 01/04/2011, by Anastasios Kyrillidis. anastasios.kyrillidis@epfl.ch, EPFL. +% ========================================================================= +if nargin < 3 + ensemble = 'Gaussian'; +end; + +if nargin < 4 + p = 0.5; +end; + +switch ensemble + case 'Gaussian' + A = randn(M,N); % Standard normal distribution + for i = 1:N % Normalize columns + A(:,i) = A(:,i)/norm(A(:,i)); + end; + case 'Bernoulli' + A = (-1).^round(rand(M,N)); % Bernoulli ~ (1/2, 1/2) distribution + for i = 1:N % Normalize columns + A(:,i) = A(:,i)/norm(A(:,i)); + end; + case 'pBernoulli' + A = (-1).^(rand(M,N) > p); % Bernoulli ~ (p, 1-p) distribution + for i = 1:N % Normalize columns + A(:,i) = A(:,i)/norm(A(:,i)); + end; + case 'sparseGaussian' + leftd = 8; + A = zeros(M,N); + for i = 1:N + ind = randperm(M); + A(ind(1:leftd),i)=1/leftd; + end + for i = 1:N % Normalize columns + A(:,i) = A(:,i)/norm(A(:,i)); + end; +end; \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/alps/generate_vector.m Fri Aug 12 11:17:47 2011 +0100 @@ -0,0 +1,52 @@ +function [x] = generate_vector(N, K, ensemble, sigma, p) +% ========================================================================= +% Sparse vector generator +% ========================================================================= +% INPUT ARGUMENTS: +% N Size of sparse vector. +% K Sparsity of vector. +% ensemble Ensemble type of measurement matrix. Possible +% values are: +% -'Gaussian': K non-zero elements of the sparse vector +% are drawn from normal distribution N(0,1). +% -'sGaussian': K non-zero elements of the sparse vector +% are drawn from normal distribution N(0,sigma^2). +% -'Bernoulli': K non-zero elements of the sparse vector +% are drawn from Bernoulli distribution (1/2,1/2). +% -'pBernoulli': K non-zero elements of the sparse vector +% are drawn from Bernoulli distribution (p,1-p). +% sigma Standard deviation of Gaussian distribution. +% p Parameter of Bernoulli distribution. +% ========================================================================= +% OUTPUT ARGUMENTS: +% x K-sparse vector. +% ========================================================================= +% 01/04/2011, by Anastasios Kyrillidis. anastasios.kyrillidis@epfl.ch, EPFL. +% ========================================================================= + +if nargin < 3 + ensemble = 'Gaussian'; +end; + +if nargin < 4 + sigma = 1; + p = 0.5; +end; + +x = zeros(N,1); +rand_indices = randperm(N); + +switch ensemble + case 'Gaussian' + x(rand_indices(1:K)) = randn(K,1); % Standard normal distribution ~ N(0,1) + case 'sGaussian' + x(rand_indices(1:K)) = sigma*randn(K,1); % Normal distribution ~ N(0,sigma^2) + case 'Uniform' + x(rand_indices(1:K)) = rand(K,1); % Uniform [0,1] distribution + case 'Bernoulli' + x(rand_indices(1:K)) = (-1).^round(rand(K,1)); % Bernoulli ~ (1/2, 1/2) distribution + case 'pBernoulli' + x(rand_indices(1:K)) = (-1).^(rand(K,1) > p); % Bernoulli ~ (p, 1-p) distribution +end; + +x = x/norm(x); \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/wrapper_ALPS_toolbox.m Fri Aug 12 11:17:47 2011 +0100 @@ -0,0 +1,80 @@ +function [x , numiter, time, x_path] = wrapper_ALPS_toolbox(b, A, param) +%% SMALL wrapper for ALPS toolbox +% +% Function gets as input +% b - measurement vector +% A - dictionary +% K - desired sparsity level +% param - structure containing additional parameters +% Output: +% x - sparse solution +% numiter - number of iterations +% time - time needed to solve the problem# +% x_path - matrix containing x after every iteration + +% Centre for Digital Music, Queen Mary, University of London. +% This file copyright 2011 Ivan Damnjanovic. +% +% This program is free software; you can redistribute it and/or +% modify it under the terms of the GNU General Public License as +% published by the Free Software Foundation; either version 2 of the +% License, or (at your option) any later version. See the file +% COPYING included with this distribution for more information. +% +%% + +if isfield(param, 'sparsity') + sparsity = param.sparsity; +else + printf('\nAlebraic Pursuit algorithms require desired sparsity level.\n("sparsity" field in solver parameters structure)\n '); + return +end + +if isfield(param, 'memory') + memory = param.memory; +else + memory = 0; +end + +if isfield(param, 'mode') + mode = param.mode; +else + mode = 0; +end +if isfield(param, 'tolerance') + tolerance = param.tolerance; +else + tolerance = 1e-5; +end +if isfield(param, 'iternum') + iternum = param.iternum; +else + iternum = 300; +end +if isfield(param, 'verbose') + verbose = param.verbose; +else + verbose = 0; +end +if isfield(param, 'tau') + tau = param.tau; +else + tau = 1/2; +end +if isfield(param, 'useCG') + useCG = param.useCG; +else + useCG = 0; +end +if isfield(param, 'mu') + mu = param.mu; +else + mu = 0; +end +training_size = size(b,2); +x=zeros(size(A,2),training_size); +for i = 1:training_size + [x(:,i), numiter, time, x_path] = AlgebraicPursuit(b(:,i), A, sparsity, 'memory', memory,... + 'mode', mode, 'tolerance', tolerance, 'ALPSiterations', iternum, ... + 'verbose', verbose, 'tau', tau, 'useCG', useCG, 'mu', mu); +end \ No newline at end of file
--- a/util/SMALL_plot.m Fri Jul 29 12:35:52 2011 +0100 +++ b/util/SMALL_plot.m Fri Aug 12 11:17:47 2011 +0100 @@ -21,7 +21,7 @@ for i =1:m subplot(m,n, (i-1)*n+1); plot(1:length(SMALL.solver(i).solution), SMALL.solver(i).solution, 'b') - title(sprintf('%s(%s) in %.2f s', SMALL.solver(i).name, SMALL.solver(i).param,SMALL.solver(i).time),'Interpreter','none') + title(sprintf('%s in %.2f s', SMALL.solver(i).name, SMALL.solver(i).time),'Interpreter','none') xlabel('Coefficient') % Plot reconstructed signal against original @@ -31,7 +31,7 @@ subplot(m,n,(i-1)*n+j); plot(1:length(SMALL.solver(i).reconstructed(:,j-1)), SMALL.solver(i).reconstructed(:,j-1) ,'b.-', 1:length(SMALL.Problem.signal(:,j-1)), SMALL.Problem.signal(:,j-1),'r--') %legend(SMALL.solver(i).name,'Original signal',0,'Location','SouthOutside','Interpreter','none'); - title(sprintf('%s(%s) in %.2f s signal %d', SMALL.solver(i).name, SMALL.solver(i).param,SMALL.solver(i).time,n-1),'Interpreter','none') + title(sprintf('%s in %.2f s signal %d', SMALL.solver(i).name, SMALL.solver(i).time,n-1),'Interpreter','none') end end end
--- a/util/SMALL_solve.m Fri Jul 29 12:35:52 2011 +0100 +++ b/util/SMALL_solve.m Fri Aug 12 11:17:47 2011 +0100 @@ -48,7 +48,11 @@ if strcmpi(solver.toolbox,'sparselab') y = eval([solver.name,'(SparseLab_A, b, n,',solver.param,');']); elseif strcmpi(solver.toolbox,'sparsify') - y = eval([solver.name,'(b, A, n, ''P_trans'', AT,',solver.param,');']); + if isa(Problem.A,'float') + y = eval([solver.name,'(b, A, n,',solver.param,');']); + else + y = eval([solver.name,'(b, A, n, ''P_trans'', AT,',solver.param,');']); + end elseif (strcmpi(solver.toolbox,'spgl1')||strcmpi(solver.toolbox,'gpsr')) y = eval([solver.name,'(b, A,',solver.param,');']); elseif (strcmpi(solver.toolbox,'SPAMS')) @@ -66,27 +70,35 @@ y = eval([solver.name,'(A, b, G,epsilon,''maxatoms'',maxatoms,''checkdict'',''off'');']); elseif (strcmpi(solver.toolbox, 'ompsbox')) basedict = Problem.basedict; - if issparse(Problem.A) + if issparse(Problem.A) A = Problem.A; - else + else A = sparse(Problem.A); - end + end G = dicttsep(basedict,A,dictsep(basedict,A,speye(size(A,2)))); epsilon=solver.param.epsilon; maxatoms=solver.param.maxatoms; y = eval([solver.name,'(basedict, A, b, G,epsilon,''maxatoms'',maxatoms,''checkdict'',''off'');']); Problem.sparse=1; -% To introduce new sparse representation algorithm put the files in -% your Matlab path. Next, unique name <TolboxID> for your toolbox and -% prefferd API <Preffered_API> needs to be defined. -% -% elseif strcmpi(solver.toolbox,'<ToolboxID>') -% -% % - Evaluate the function (solver.name - defined in the main) with -% % parameters given above -% -% y = eval([solver.name,'(<Preffered_API>);']); - +elseif (strcmpi(solver.toolbox, 'ALPS')) + if ~isa(Problem.A,'float') + % ALPS does not accept implicit dictionary definition + A = opToMatrix(Problem.A, 1); + end + [y, numiter, time, y_path] = wrapper_ALPS_toolbox(b, A, solver.param); + + + % To introduce new sparse representation algorithm put the files in + % your Matlab path. Next, unique name <TolboxID> for your toolbox and + % prefferd API <Preffered_API> needs to be defined. + % + % elseif strcmpi(solver.toolbox,'<ToolboxID>') + % + % % - Evaluate the function (solver.name - defined in the main) with + % % parameters given above + % + % y = eval([solver.name,'(<Preffered_API>);']); + else printf('\nToolbox has not been registered. Please change SMALL_solver file.\n'); return