Mercurial > hg > smallbox
changeset 181:0dc98f1c60bb danieleb
minor edits
author | Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk> |
---|---|
date | Thu, 05 Jan 2012 15:46:13 +0000 |
parents | 28b20fd46ba7 |
children | f8bc99a5470c |
files | examples/SMALL_test_mocod.m |
diffstat | 1 files changed, 61 insertions(+), 39 deletions(-) [+] |
line wrap: on
line diff
--- a/examples/SMALL_test_mocod.m Thu Nov 17 13:01:55 2011 +0000 +++ b/examples/SMALL_test_mocod.m Thu Jan 05 15:46:13 2012 +0000 @@ -1,18 +1,25 @@ +%% SMALL_test_mocod +% Script that tests the twostep dictionary learning algorithm with MOCOD +% dictionary update. +% +% REFERENCES +% D. Barchiesi and M. D. Plumbely, Learning incoherenct dictionaries for +% sparse approximation using iterative projections and rotations. +%% Clear and close clc, clear, close all %% Parameteres -nTrials = 10; %number of trials of the experiment +nTrials = 10; %number of trials of the experiment % Dictionary learning parameters -toolbox = 'TwoStepDL'; %dictionary learning toolbox -dicUpdate = 'mocod'; %dictionary learning updates -zeta = logspace(-2,2,10); -eta = logspace(-2,2,10); - -iterNum = 20; %number of iterations -epsilon = 1e-6; %tolerance level -dictSize = 512; %number of atoms in the dictionary -percActiveAtoms = 5; %percentage of active atoms +toolbox = 'TwoStepDL'; %dictionary learning toolbox +dicUpdate = 'mocod'; %dictionary learning updates +zeta = logspace(-2,2,10); %range of values for the incoherence term +eta = logspace(-2,2,10); %range of values for the unit norm term +iterNum = 20; %number of iterations +epsilon = 1e-6; %tolerance level +dictSize = 512; %number of atoms in the dictionary +percActiveAtoms = 5; %percentage of active atoms % Test signal parameters signal = audio('music03_16kHz.wav'); %audio signal @@ -25,23 +32,29 @@ % Initial dictionaries gaborParam = struct('N',blockSize,'redundancyFactor',2,'wd',@rectwin); gaborDict = Gabor_Dictionary(gaborParam); -initDicts = {[],gaborDict}; +initDicts = {[],gaborDict}; %cell containing initial dictionaries %% Generate audio approximation problem -signal = buffer(signal,blockSize,blockSize*overlap,@rectwin); %buffer frames of audio into columns of the matrix S +%buffer frames of audio into columns of the matrix S +signal = buffer(signal,blockSize,blockSize*overlap,@rectwin); SMALL.Problem.b = signal.S; -SMALL.Problem.b1 = SMALL.Problem.b; % copy signals from training set b to test set b1 (needed for later functions) -% omp2 sparse representation solver -ompParam = struct('X',SMALL.Problem.b,'epsilon',epsilon,'maxatoms',nActiveAtoms); %parameters +%copy signals from training set b to test set b1 (needed for later functions) +SMALL.Problem.b1 = SMALL.Problem.b; + +%omp2 sparse representation solver +ompParam = struct('X',SMALL.Problem.b,... + 'epsilon',epsilon,... + 'maxatoms',nActiveAtoms); %parameters solver = SMALL_init_solver('ompbox','omp2',ompParam,false); %solver structure %% Test -nInitDicts = length(initDicts); %number of initial dictionaries -nZetas = length(zeta); -nEtas = length(eta); +nInitDicts = length(initDicts);%number of initial dictionaries +nZetas = length(zeta); %number of incoherence penalty parameters +nEtas = length(eta); %number of unit norm penalty parameters -SMALL.DL(nTrials,nInitDicts,nZetas,nEtas) = SMALL_init_DL(toolbox); %create dictionary learning structures +%create dictionary learning structures +SMALL.DL(nTrials,nInitDicts,nZetas,nEtas) = SMALL_init_DL(toolbox); for iTrial=1:nTrials for iInitDicts=1:nInitDicts for iZetas=1:nZetas @@ -50,15 +63,16 @@ SMALL.DL(iTrial,iInitDicts,iZetas,iEtas).name = dicUpdate; SMALL.DL(iTrial,iInitDicts,iZetas,iEtas).profile = true; SMALL.DL(iTrial,iInitDicts,iZetas,iEtas).param = ... - struct('data',SMALL.Problem.b,... - 'Tdata',nActiveAtoms,... - 'dictsize',dictSize,... - 'iternum',iterNum,... - 'memusage','high',... - 'solver',solver,... - 'initdict',initDicts(iInitDicts),... - 'zeta',zeta(iZetas),... - 'eta',eta(iEtas)); + struct('data',SMALL.Problem.b,... %observed data + 'Tdata',nActiveAtoms,... %active atoms + 'dictsize',dictSize,... %number of atoms + 'iternum',iterNum,... %number of iterations + 'memusage','high',... %memory usage + 'solver',solver,... %sparse approx solver + 'initdict',initDicts(iInitDicts),...%initial dictionary + 'zeta',zeta(iZetas),... %incoherence penalty factor + 'eta',eta(iEtas)); %unit norm penalty factor + %learn dictionary SMALL.DL(iTrial,iInitDicts,iZetas,iEtas) = ... SMALL_learn(SMALL.Problem,SMALL.DL(iTrial,iInitDicts,iZetas,iEtas)); end @@ -66,10 +80,10 @@ end end -%% Evaluate coherence and snr of representation for the various methods -sr = zeros(size(SMALL.DL)); %signal to noise ratio +%% Evaluate coherence and snr of representation +sr = zeros(size(SMALL.DL)); %signal to noise ratio mu = zeros(iTrial,iInitDicts,iZetas,iEtas); %coherence -dic(size(SMALL.DL)) = dictionary; %initialise dictionary objects +dic(size(SMALL.DL)) = dictionary; %initialise dictionary objects for iTrial=1:nTrials for iInitDicts=1:nInitDicts for iZetas=1:nZetas @@ -79,7 +93,8 @@ tempSolver = SMALL_solve(SMALL.Problem,solver); %calculate snr sr(iTrial,iInitDicts,iZetas,iEtas) = ... - snr(SMALL.Problem.b,SMALL.DL(iTrial,iInitDicts,iZetas,iEtas).D*tempSolver.solution); + snr(SMALL.Problem.b,... + SMALL.DL(iTrial,iInitDicts,iZetas,iEtas).D*tempSolver.solution); %calculate mu dic(iTrial,iInitDicts,iZetas,iEtas) = ... dictionary(SMALL.DL(iTrial,iInitDicts,iZetas,iEtas).D); @@ -90,18 +105,23 @@ end end -save('MOCOD.mat') - %% Plot results -minMu = sqrt((dictSize-blockSize)/(blockSize*(dictSize-1))); %lowe bound on coherence -initDictsNames = {'Data','Gabor'}; -lineStyles = {'k.-','r*-','b+-'}; +minMu = sqrt((dictSize-blockSize)/(blockSize*(dictSize-1)));%lower bound on coherence +initDictsNames = {'Data','Gabor'}; %names of initial dictionaries +lineStyles = {'k.-','r*-','b+-'}; for iInitDict=1:nInitDicts figure, hold on, grid on - title([initDictsNames{iInitDict} ' Initialisation']); + %print initial dictionary as figure title + DisplayFigureTitle([initDictsNames{iInitDict} ' Initialisation']); +% set(gcf,'Units','Normalized'); +% txh = annotation(gcf,'textbox',[0.4,0.95,0.2,0.05]); +% set(txh,'String',[initDictsNames{iInitDict} ' Initialisation'],... +% 'LineStyle','none','HorizontalAlignment','center'); + %calculate mean coherence levels and SNRs over trials coherenceLevels = squeeze(mean(mu(:,iInitDict,:,:),1)); meanSNRs = squeeze(mean(sr(:,iInitDict,:,:),1)); - %stdSNRs = squeeze(std(sr(:,iInitDict,iZetas,iEtas),0,1)); +% stdSNRs = squeeze(std(sr(:,iInitDict,iZetas,iEtas),0,1)); + %plot coherence levels subplot(2,2,1) surf(eta,zeta,coherenceLevels); set(gca,'Xscale','log','Yscale','log','ZLim',[0 1.4]); @@ -111,6 +131,7 @@ zlabel('\mu'); title('Coherence') + %plot SNRs subplot(2,2,2) surf(eta,zeta,meanSNRs); set(gca,'Xscale','log','Yscale','log','ZLim',[0 25]); @@ -120,6 +141,7 @@ zlabel('SNR (dB)'); title('Reconstruction Error') + %plot mu/SNR scatter subplot(2,2,[3 4]) mus = mu(:,iInitDict,:,:); mus = mus(:);